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Abstract 
·Modelling the fundamental performance limits of 

Wireless Sensor Networks (WSNs) is of paramount 
importance to understand the behaviour of WSN under 
worst-case conditions and to make the appropriate design 
choices. In that direction, this paper contributes with a 
methodology for modelling cluster-tree WSNs with a 
mobile sink. We propose closed-form recurrent 
expressions for computing the worst-case end-to-end 
delays, buffering and bandwidth requirements across any 
source-destination path in the cluster-tree assuming error 
free channel. We show how to apply our theoretical results 
to the specific case of IEEE 802.15.4/ZigBee WSNs. 
Finally, we demonstrate the validity and analyze the 
accuracy of our methodology through a comprehensive 
experimental study, therefore validating the theoretical 
results through experimentation. 

1. Introduction 
Wireless Sensor Networks (WSNs) emerge as enabling 

infrastructures for large-scale distributed embedded 
systems. Timeliness is an important requirement to be 
fulfilled in these systems. However, issues such as large 
scale and communication/computing and energy 
limitations pose important difficulties in guaranteeing a 
correct behaviour of these systems.  

Evaluating the performance limits of WSNs is therefore 
a crucial task, particularly when the network is expected to 
operate under worst-case conditions [1]. For achieving 
real-time communications over sensor networks, it is 
mandatory to rely on deterministic routing and MAC 
(Medium Access Control) protocols. Usually, these 
networks use hierarchical logical topologies such as 
cluster-tree or hexagonal (e.g. [2-4]). Issues such as the 
use of contention-free MAC protocols (e.g. time division 
or token passing) and the possibility of performing 
end-to-end resource reservation contrast with what can be 
achieved in mesh-like topologies, where contention-based 
MACs and probabilistic routing protocols are used. 
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In a previous work [5], the authors have provided a 
methodology and closed-form expressions to dimension 
the network resources in a cluster-tree WSN with a static 
sink. The sink – a central point that collects all sensory 
data – was assumed to be statically attached to the root. 
That work aimed at evaluating the worst-case network 
performance assuming a cluster-tree topology of balanced 
height and load. This symmetry property was explored to 
derive per-hop and end-to-end resource requirements in 
addition to the worst-case delays of upstream flows (i.e. 
from child nodes to the root). 

However, while the static sink behaviour is adequate 
for root-centric WSN applications (e.g. a surveillance 
system delivering alarms to a central station), other 
applications may impose or benefit from collecting data at 
different network locations (e.g. a doctor with a hand-held 
computer collecting patients’ status). Therefore, in this 
paper we investigate the worst-case resource dimensioning 
and analysis of cluster-tree WSNs with mobile sink 
behaviour assuming an error free channel. In practice, this 
assumption does not hold, but theoretical results are 
almost likely to be valid in interference free and “clean” 
environments (e.g. outdoor and open space areas). 

We consider the sink as an autonomous entity that does 
not make part of the static cluster-tree WSN, but can be 
associated to any of its routers through any (wired or 
wireless) communication means. Thus, the sink mobility 
does not impact the WSN topology, but affects the data 
flow destination (any router in the WSN). Contrarily to 
[5], in this paper we address not only upstream flows (sink 
in the root) but also downstream flows (sink not in the 
root), thus achieve a more complete analysis, yet more 
complex. 

For the sake of simplicity and space, this paper address 
neither mobility management issues (namely how routes 
must be updated upon mobility of the sink) nor the impact 
of this procedure on the worst-case analysis (potential 
network inaccessibility times). The paper proposes and 
describes a system model, an analytical methodology and 
a software tool that permit the worst-case dimensioning 
and analysis of cluster-tree WSNs. In this way, it is 
possible to guarantee the routers’ buffers size to avoid 
overflows and to minimize each cluster’s duty cycle 



(maximizing nodes’ lifetime) still satisfying that 
messages’ deadlines are met. 

Importantly, we show how to instantiate our generic 
methodology to IEEE 802.15.4/ZigBee [6, 7] protocols, 
which are very promising technologies for WSNs (In fact, 
in 2007, 7 million IEEE 802.15.4-enabled chips were sold, 
an increase of 1400% from 2004 [7]). Finally, we assess 
the validity of our theoretical model by comparing 
worst-case results (buffer requirements and message 
end-to-end delays) with the maximum and average values 
measured through an experimental test-bed based on 
Commercial-Off-The-Shelf technologies. 
Contributions of this paper 

(1) We provide a generic system model, encompassing 
the cluster-tree topology model and the data-flow 
model; we also identify the worst-case cluster 
scheduling for any location of the sink (Section 3). 

(2) We present a methodology, based on Network 
Calculus, to characterize input and output flows in 
each router in the cluster-tree WSN (Section 4) and 
to derive upper bounds on buffer requirements and 
per-hop and end-to-end delays (Section 5). 

(3) We show how to apply our methodology to 
dimension IEEE 802.15.4/ZigBee cluster-tree 
WSNs (Section 6). 

(4) We demonstrate the validity of our methodology 
through an experimental test-bed (Section 7). 

Other related work 
The evaluation of fundamental performance limits of 

WSNs has been addressed in several research works [1-3]. 
In [1], the authors evaluated the asymptotic behaviour of 
operational lifetime and energy-constrained capacity of 
sensor networks. In [2], the authors have evaluated the 
real-time capacity of multi-hop WSNs, identifying how 
much real-time data the network can transfer by their 
deadlines. A capacity bound has been derived for (ideal) 
MAC protocols with fixed priority packet scheduling 
mechanisms. In [3], the authors have analyzed the 
fundamental limits for acceptable loads, utilization, and 
delays in multi-hop sensor networks with linear and grid 
topologies, in case of all sensor nodes contribute equally 
to the network load. 

The worst-case analysis and resource dimensioning of 
WSNs using Network Calculus has been pursued by 
Schmitt et al. ([10-12]), who proposed the Sensor Network 
Calculus methodology. In [10], Sensor Network Calculus 
was introduced and basic components such as arrival and 
service curves were defined. The system model assumes 
generic tree-based topologies with nodes transmitting 
sensor data towards the sink that is associated with the 
root. The authors have also proposed a general iterative 
procedure to compute the network internal flows and, 
subsequently, resource requirements and delay bounds. On 
the contrary, our work provides recurrent equations to 
avoid iterative complex and time consuming 
computations, which are not suitable for large-scale 

WSNs. In [11], the previous Sensor Network Calculus 
framework was extended to incorporate in-network 
processing features (e.g. data aggregation) to reduce the 
amount of data that has to be transmitted. In our work, we 
abstract from the computational resources in the network 
nodes and from data aggregation. In [12], the authors have 
specified the worst-case topology (i.e. the topology that 
exhibits the worst-case behaviour in terms of buffer 
requirements, delay bounds and network lifetime) in 
networks with random nodes deployment. Finding the 
general worst-case topology is a complex task, thus their 
methodology explores the worst-case tree constrained on 
maximum depth and number of child routers that 
maximizes the arrival curve of the root. As compared to 
[10-12], our system model is more accurate for the 
specific case of cluster-tree topologies and the sink can be 
associated with any router in WSNs. 

On the other hand, several research works have dealt 
with sink mobility in order to minimize energy 
consumption in the network [13, 14]. The proposed 
approaches use random, predictable or controlled mobility 
of one or more sinks [13]. Four strategies (random, 
geographically, intelligent and genetic algorithm-based 
strategies) focusing on optimal sink placement for 
minimizing the worst-case delay as well as maximizing 
the lifetime of a WSN have been introduced in [14]. 
Conversely, in our work we compute the worst-case delays 
and resource requirements for given sink positions.  

2. Background on Network Calculus 
Network Calculus [9] is a mathematical methodology 

based on min-plus algebra that applies to the deterministic 
analysis of queuing/flows in the networks. This section 
briefly introduces the aspects that are most significant to 
this paper. For additional details please refer to [9, 17]. 

A basic system model S in Network Calculus consists 
of a buffered FIFO node with the corresponding 
transmission link. For a given data flow, the input function 
R(t) is a cumulative number of bits that have arrived to 
system S in the time interval (0, t). The output function 
R*(t) is the number of bits that have left S in the same 
interval (0, t). An arrival curve α (t) upper bounds the 
input function of a system S such that for ∀s, 0 ≤ s ≤ t, 
R(t) - R(s) ≤ α (t - s). A service curve β (t) represents a 
lower bound on the transmitted cumulated flow, thus for 
∀t there exists t0 ≤ t such that R*(t) - R*(t0) ≥ β (t - t0). The 
knowledge of the arrival and service curves enables us to 
determine performance bounds, namely the delay bound 
Dmax given by the maximum horizontal distance between 
α (t) and β (t), which represents the worst-case delay of 
the message traversing system S, and the backlog bound 
Qmax given by the maximum vertical distance between 
α (t) and β (t), which represents the minimum buffer size 
requires inside S. These concepts are shown in Figure 9. 

So far, we have handled a system S as a single buffered 
node. However, system S might also be a sequence of 



nodes or even a complete network. In this case, the 
concatenation theorem enables us to investigate serial 
nodes in sequence as a single node. 

Concatenation Theorem. Assume a flow with input 
function R(t) traverses system S1 and S2 in sequence, 
where S1 offers service curve β1 (t) and S2 offers β2 (t). 
Then the concatenation of these two systems offers the 
following single service curve β (t) to the traversing flow: ߚሺݐሻ = ሺߚଵ۪ߚଶሻሺݐሻ (1) 

where ⊗ is the min-plus convolution defined for f, g ∈ F, 
where F is the set of wide-sense increasing functions, as: ሺ݂۪݃ሻሺݐሻ = ݂݅݊଴ஸ௦ஸ௧ሼ݂ሺݐ െ ሻݏ ൅ ݃ሺݏሻሽ; ݐ׊ ݎ݋݂      ൒ 0

The accuracy of the worst-case bounds depends on how 
tightly the selected arrival and service curves follow the 
real network behaviour. Different types of arrival and 
service curves have been proposed in Network Calculus 
(e.g., [9, 10]). However, the (b, r) arrival curve and 
rate-latency service curve are the most used in such 
network models. The (b, r) arrival curve is defined as 
α (t) = b + r·t for ∀t > 0, where b is called burst tolerance, 
and r is the average data rate. The rate-latency service 
curve is defined as βR,T (t) = R·(t-T)+, where R ≥ r is the 
guaranteed link bandwidth, T is the maximum latency of 
the service, and (x)+ = max(0, x). These curves lead to a 
fair trade-off between computing complexity and 
approximation accuracy of the real system behaviour. 

Hereafter, we consider a data flow constrained by the 
(b, r) arrival curve α (t) and traversing system S with a 
rate-latency service curve βR,T (t). Then, the guaranteed 
performance bounds Dmax and Qmax (see Figure 9 for 
additional intuition) are easily computed as: ܦ௠௔௫ = ௕ோ ൅ ܶ  ܳ௠௔௫ = ܾ ൅ ݎ · ܶ (2) 

With Network Calculus, it is also possible to express an 
upper bound of the outgoing flow with output function 
R*(t), called output bound, as (the proof in [16]):  כߙሺݐሻ = ሻݐோ,்ሺߚሻۨݐሺߙ = ሻݐሺߙ ൅ ݎ · ܶ ൒ ሻݐሺߙ (3) 
where ۨ is the min-plus deconvolution defined as: ሺ݂ۨ݃ሻሺݐሻ = ௦ஹ଴݌ݑݏ ሼ݂ሺݐ ൅ ሻݏ െ ݃ሺݏሻሽ; ݐ׊ ݎ݋݂    א ܴ ܽ݊݀ ݂, ݃ א ࡲ

Due to the accumulation of the data flows in the 
direction of the sink, the nodes offer a service curve β (t) 
to this aggregated data flow. Thus, the delay and backlog 
bounds can be computed for the entire aggregate data flow 
at each node. Using the aggregate scheduling theorem, 
tighter bounds can be computed for individual flows 
traversing the network. In this paper, we use both 
approaches to compare the results. 

Aggregate Scheduling. Consider a node multiplexing 
two data flows, 1 and 2, in FIFO order. Assume that 
flow 2 is constrained by the (b, r) arrival curve α2 (t) and 
the node guarantees a service curve βR,T (t) to the 

aggregate of these two flows. Define the family of 
functions as: ߚଵሺݐ, ሻߠ = ሺܴ െ ଶሻݎ ቈݐ െ ቆܾଶ ൅ ଶሺܶݎ െ ሻܴߠ െ ଶݎ ൅ ܶቇ቉ା . 1ሼ௧வఏሽ (4) 

Then, for any θ ≥ 0, ߚଵሺݐ,  ሻ is a service curve guaranteedߠ
for flow 1. 

3. System model 
This section defines the cluster-tree topology and 

data-flow models that will be considered in the analysis. It 
also elaborates on the worst-case cluster scheduling; that 
is, the time sequence of clusters’ active periods leading to 
the worst-case end-to-end delay for a message to be routed 
to the sink. 

3.1 Cluster-tree topology model 
Cluster-tree WSNs feature a tree-based logical 

topology, where nodes are organized in different groups, 
called clusters. Each node is connected to one node at 
lower depth, called parent node, and can be connected to 
multiple nodes at upper depth, called child nodes.  

Consider Figure 1. The cluster-tree topology contains 
two main types of nodes. First, the nodes that can 
associate with previously associated nodes and can 
participate in the multi-hop routing are referred to as 
routers (Rij, i.e router j at depth i). Second, the leaf nodes 
that do not allow association of other nodes and do not 
participate in routing are referred to as end-nodes (N). The 
router that has no parent is called root (it might hold 
special functions such as identification, formation and 
control of the entire topology). Routers and end-nodes can 
both have sensing capabilities. Therefore they are 
generally referred to as sensor nodes. Each router forms its 
cluster and is referred to as cluster-head of this cluster.  

In this paper we aim at specifying the worst-case 
cluster-tree topology, i.e. the network topology 
configuration that leads to the worst-case performance. 
This means that a dynamically changing cluster-tree WSN 
can assume different configurations, but it can never 
exceed the worst-case topology, in terms of maximum 
depth and number of child routers/end-nodes. Thus, the 
worst-case cluster-tree topology is graphically represented 
by a rooted balanced directed tree [15] defined by the 
following three parameters: 

 Height of the tree, i.e. the maximum number of :ࡴ -
logical hops from the deepest router to the root. A 
tree with only a root has a height of zero.  

ࢄ࡭ࡹࢋࢊ࢕࢔_ࢊ࢔ࢋࡺ - : Maximum number of end-nodes that can 
be associated to a router. 

ࢄ࡭ࡹ࢘ࢋ࢚࢛࢕࢘ࡺ - : Maximum number of child routers that can 
be associated to a parent router. 

The depth of a node is defined as the number of logical 
hops from that node to the root. The root is at depth zero, 
and the maximum depth of an end-node is H+1.  



Figure 1. The cluster-tree topology and data-flow models. 

Note that the sink is a special type of node that gathers 
the sensory data from all sensor nodes inside the network. 
Unlike previous work, we relax the assumption that the 
sink is only associated with the root and consider the sink 
to be an autonomous and topology-independent mobile 
node. The mobile behaviour means that a sink moves 
arbitrarily within a static cluster-tree WSN and can be 
associated with any router within communication range. 
The router, to which the sink is in a given moment 
associated, is referred to as sink router. There can be more 
than one mobile sink in a WSN, but we assume that only 
one is active (i.e. gathers the sensory data) at a given time. 
We specify another parameter, ܪ௦௜௡௞ א ሺ0,  ሻ, to representܪ
the depth at a given moment of the sink router in a 
cluster-tree topology. Note that if the sink is associated 
with the root, i.e. ܪ௦௜௡௞ = 0, the network contains only 
upstream flows. This case has already been analysed in 
[5]. In this paper, we analyze the case where ܪ௦௜௡௞ ൐ 0. 

Our terminology and conventions are as illustrated in 
Figure 1, corresponding to a configuration where ܪ = 2, ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ = 3, ௥ܰ௢௨௧௘௥ெ஺௑ = 2, and ܪ௦௜௡௞ = 2. Note that a 
cluster-tree WSN may contain additional nodes per router 
than those defined by ௥ܰ௢௨௧௘௥ெ஺௑  and ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑  parameters. 
However, these additional nodes cannot be granted 
guaranteed resources. 

3.2  Data-flow model 
In this paper, we assume that all sensory data is 

exclusively sent to the sink. All sensor nodes are assumed 
to sense and transmit data upper bounded by the arrival 
curve ߙௗ௔௧௔ሺݐሻ = ܾௗ௔௧௔ ൅ ௗ௔௧௔ݎ ·  In case of different data .ݐ
flows, ߙௗ௔௧௔ሺݐሻ is considered to represent the upper bound 
of the highest flow in a network. This may introduce some 

pessimism to the analysis if the variance between data 
flows is significant.  

Each end-node is granted a service guarantee from its 
parent router corresponding to the rate-latency service 
curve ߚௗ௔௧௔ሺݐሻ = ܴௗ௔௧௔ · ሺݐ െ ௗܶ௔௧௔ሻା. By applying Eq. (3) 
to a flow constrained by the arrival curve ߙௗ௔௧௔ሺݐሻ and that 
is granted a service curve ߚௗ௔௧௔ሺݐሻ, we obtain the output 
arrival curve ߙௗ௔௧௔כ ሺݐሻ, which upper bounds the outgoing 
data flow from any end-node: ߙௗ௔௧௔כ ሺݐሻ = ሻݐௗ௔௧௔ሺߙ ൅ ௗ௔௧௔ݎ · ௗܶ௔௧௔ (5) 

On the other hand, the amount of bandwidth allocated 
by each router depends on the cumulative amount of data 
at its inputs, which increases towards the sink. Thus, the 
total input function R of each router depends on the depth, 
and consists of the sum of the output functions R* of its 
end-nodes and child routers. Additionally, the router itself 
can be equipped with sensing capability producing a 
traffic bounded by ߙௗ௔௧௔ሺݐሻ. Thus, the arrival curve 
constraining the total input function R of a router at 
general depth i is expressed as: 

ത௜ߙ = ௗ௔௧௔ߙ ൅ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ · כௗ௔௧௔ߙ ൅ ෍ ேೝ೚ೠ೟೐ೝಾಲ೉כ௥௢௨௧௘௥ሺ௜ାଵ,௝ሻߙ
௝ୀଵ (6) 

This result can then be used in Eq. (3). The outgoing 
flow of a router at depth i is upper bounded by the output 
arrival curve as follows: ߙ௜כ =  ௜ିଵ (7)ߚത௜ۨߙ

Hence, the data-flow analysis consists in the 
computation of the arrival curves ߙത௜ and ߙ௜כ, using 
iteratively Eqs. (6) and (7), from the deepest routers until 
reaching the sink. After that, the resource requirements of 
each router, in terms of buffer requirement Qi and 
bandwidth requirement Ri, and the worst-case end-to-end 
delay bound of WSN are computed.  

In cluster-tree WSNs where the sink can be associated 
with a router other than the root, data flows may then be 
redirected in the downstream directions. Data flows over 
upstream links (called upstream flows) have already been 
analysed in [5]. Data flows over downstream links (called 
downstream flows), where data is sent from a parent router 
to its child router, are analysed in this paper. In what 
follows, the upstream and downstream flows are marked 
by the subscripts U and D, respectively (e.g. ߙ௜௎כ כ௜஽ߙ , ). We 
also assume two types of service curves (i.e. ߚ௜௎ for 
upstream flows and ߚ௜஽ downstream flows) provided by 
each parent router at depth i to its child routers at depth 
i+1, and expressed as: ߚ௜௎ሺݐሻ = ܴ௜௎ · ሺݐ െ ௜ܶ௎ሻା ሻݐ௜஽ሺߚ   = ܴ௜஽ · ሺݐ െ ௜ܶ஽ሻା (8) 

To ensure the symmetry properties of the worst-case 
cluster-tree topology assumed in our methodology, the 
same downstream or upstream service curves must be 
guaranteed to all downstream or upstream flows at a given 
depth, respectively. 
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3.3 Time division cluster scheduling 
In general, the radio channel is a shared communication 

medium where more than one node can transmit at the 
same time. In cluster-tree WSNs, messages are forwarded 
from cluster to cluster until reaching the sink. The time 
window of each cluster is periodically divided into an 
active period (AP), during which the cluster-head enables 
data transmissions inside its cluster, and a subsequent 
inactive period, during which all cluster nodes may enter 
low-power mode to save energy resources. To avoid 
collisions between multiple clusters, it is mandatory to 
schedule active periods of different clusters in an ordered 
sequence, called Time Division Cluster Schedule (TDCS). 
In other words, TDCS is equivalent to a permutation of 
active periods of all clusters in a WSN such that no 
inter-cluster interference occurs. In case of one collision 
domain (i.e. all nodes hear each other), the TDCS must be 
non-overlapping, i.e. only one cluster can be active at any 
time. On the contrary, in a network with multiple collision 
domains, the clusters from different non-overlapping 
collision domains may be active at the same time.  

Due to the cumulative flow effect, the amount of traffic 
increases in the direction of the sink such that the 
maximum flow is reached in the cluster to which the sink 
is associated (e.g. cluster11 in Figure 1). Hence, the duty 
cycles of the clusters closer to the sink should be higher 
than the ones of the clusters that are farther from the sink, 
to ensure efficient bandwidth utilization [18]. 

The TDCS significantly affects the resource 
requirements and delay bounds in cluster-tree WSNs. The 
number of feasible TDCSs in a network with n routers 
inside one collision domain is equal to the number of 
permutations, given by n factorial (n!). Note that for each 
data flow originated in a given node, there is a 
corresponding best-case/worst-case TDCS that 
minimizes/maximizes the end-to-end delay of that flow, 
respectively. Thus, it is impossible to determine a general 
best-case or worst-case TDCS meeting the requirements of 
all data flows. On one hand, the best-case TDCS of a data 
flow originated in node R24 (Figure 1), for example, 
comprises the consecutive sequence of active periods 
corresponding to the ordered sequence of the clusters 
traversed along the routing path from R24 to the sink. On 
the other hand, the worst-case TDCS comprises the same 
ordered sequence of active periods, but in the reverse 
order, which means starting from the sink backward to R24. 
The active periods of other clusters, which are not on the 
routing path, are appended to the previously formed 
sequence in arbitrary order such that a complete TDCS is 
produced (see example in [17]). Using our methodology 
based on the symmetry properties of the cluster-tree 
model, the network resources of a WSN are dimensioned 
for the worst-case TDCS of a data flow originated in the 
end-node that is farthest from the sink (i.e., a flow along 
the longest path in a WSN). 

To reduce the resource requirements of the routers, we 
introduce the following priority rule: “When a router 
handles the links in different directions (e.g. R01 and R11 in 
Figure 1), the incoming flows via upstream data links are 
served before the outgoing flow via downstream data 
link.” Using this rule, the end-to-end delay of an incoming 
data flow can be reduced to at most one TDCS cycle 
duration. 

4. Input and output data flows analysis 
In our model, we assume that the end-nodes have 

sensing capabilities, but the sensing capability of routers is 
optional. For an improved analysis, we introduce a binary 
variable S whose value is equal to 1 if routers have sensing 
capabilities; otherwise S is equal to 0. 

The total input data flow of each router as shown in  
Eq. (6) comprises, among other terms, the sum of the 
output flows of its end-nodes and, optionally, its own 
sensory data flow constrained by ߙௗ௔௧௔ሺݐሻ. This part of the 
total input flow is the same for upstream and downstream 
flows, hence we introduce the substitution: ߙതுሺݐሻ = ܵ · ሻݐௗ௔௧௔ሺߙ ൅ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ · כௗ௔௧௔ߙ ሺݐሻ

Thus, using Eq. (5) we get: ߙതுሺݐሻ = ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ · ሻݐௗ௔௧௔ሺߙ ൅ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ · ௗ௔௧௔ݎ · ௗܶ௔௧௔ (9)

where, ݎҧு = ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ ·  ௗ௔௧௔ is the resultingݎ
aggregate rate of ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ input data flows, and തܾு = ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ · ܾௗ௔௧௔ ൅ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ · ௗ௔௧௔ݎ ڄ ௗܶ௔௧௔ is the 
burst tolerance. Note that ߙതுሺݐሻ is also equal to the total 
input upstream flow of the deepest routers (at depth H). 

4.1 Upstream data flows 
In [5], the output and input upstream flows were 

analyzed and derived in detail. Thus, here we only 
summarize the final general recurrent expressions. The 
arrival curve, constraining the total input upstream flow of 
each router at depth i, is expressed as follows: 

ത௜௎ߙ = ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௝ுି௜
௝ୀ଴ ቍ · തுߙ ൅ ෍൫ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௝ · ௜ା௝ିଵ൯ுି௜ߪ

௝ୀଵ (10)

for ∀i, 0≤ i ≤ H, 
where 

௡ߪ = ቌ ෍ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௞ுିሺ௡ାଵሻ
௞ୀ଴ ቍ · ҧுݎ · ௡ܶ௎

The output bound for the upstream data flow from each 
child router at depth i, receiving a service curve ߚ௜ିଵሺݐሻ 
from a parent router at depth i-1, is then expressed as: ߙ௜௎כ = ത௜௎ߙ ൅ ௜ିଵߪ = 

ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௝ுି௜
௝ୀ଴ ቍ · തுߙ ൅ ෍൫ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௝ · ௜ା௝ିଵ൯ுି௜ߪ

௝ୀ଴
(11)

for ∀i, 0 < i ≤ H 



 
Figure 2. The queuing system model for upstream and downstream flows. 

 

4.2 Downstream data flows 
In [17], we derive the arrival curve of the total input 

downstream flow ߙത௜஽ and the upper bound of the output 
downstream flow ߙ௜஽כ  depth by depth, using the Network 
Calculus methodology, starting from depth 0 (i.e. the 
root). In our analysis, we consider the queuing model in 
Figure 2. For the sake of space, here we only summarize 
the final general recurrent expressions. 

The arrival curve constraining the total input 
downstream flow of a router at a given depth i, for 
i = 0, ·····, (ܪ௦௜௡௞-1), is expressed as: ߙത௜஽ = 

ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · തுߙ ൅ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ െ 1ሻ · ෍ ௝௜ߜ

௝ୀ଴ ൅ ෍ ௝߬௜ିଵ
௝ୀ଴

(12)

for ∀i, 0 ≤ i < ܪ௦௜௡௞, 
where  ߜ௡ = ෍ ሺሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௞ · ௞ା௡ሻுିሺ௡ାଵሻߪ

௞ୀ଴
௡ߪ  = ቌ ෍ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௞ுିሺ௡ାଵሻ

௞ୀ଴ ቍ · ҧுݎ · ௡ܶ௎
 ߬௡ = ൭෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௞௡

௞ୀ଴ ൱ · ҧுݎ · ௡ܶ஽
The upper bound of the output downstream flow from a 

parent router at depth i, providing a service curve ߚ௜஽ሺݐሻ, 
towards its child router at depth i+1 is expressed as: ߙ௜஽כ = ത௜஽ߙ ൅ ߬௜= (13)

 ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · തுߙ ൅ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ െ 1ሻ · ෍ ௝௜ߜ

௝ୀ଴ ൅ ෍ ௝߬௜
௝ୀ଴

for ∀i, 0 ≤ i < Hୱ୧୬୩. 
Note that the sink can be associated to the router at a 

depth lower than the height of the cluster-tree, i.e. ܪ௦௜௡௞ ൏  or equal to the height of the (Figure 3.a) ܪ
cluster-tree, i.e. ܪ௦௜௡௞ =  .(Figure 3.b) ܪ

In the case of ܪ௦௜௡௞ ൏  the arrival curve constraining ,ܪ
the total input downstream flow is expressed as: 

തሺுೞ೔೙ೖሻ஽ߙ = തுߙ ൅ ௥ܰ௢௨௧௘௥ெ஺௑ · כሺுೞ೔೙ೖାଵሻ௎ߙ ൅ כሺுೞ೔೙ೖିଵሻ஽ߙ (14)

If ܪ௦௜௡௞ =  the arrival curve constraining the total ,ܪ
input downstream flow is expressed as: ߙതሺுೞ೔೙ೖሻ஽ = തுߙ ൅ כሺுೞ೔೙ೖିଵሻ஽ߙ  (15)

 

Figure 3. Possible locations of a sink router and 
correspondent data flows. 

5. Worst-case network dimensioning 
Supporting time-sensitive WSN applications implies to 

predict and guarantee maximum end-to-end 
communication delays. To ensure bounded end-to-end 
delays and to avoid buffer overflow, network resources 
must be known in advance, and dimensioned along the 
path from a source to a sink. 

5.1 Per-router resources analysis 
We aim at specifying the minimum bandwidth of each 

downstream data links and the minimum buffer size at 
each downstream router needed to store the bulk of data 
incoming through the router’s inputs. 
Bandwidth requirements 

Consider a parent router at depth i providing a service 
curve ߚ௜஽ሺݐሻ to its child router at depth i+1 (see Figure 1). 
The total input downstream flow of the parent router is 
constrained by the arrival curve ߙത௜஽ሺݐሻ and dispatched 
through a downstream link to its child router. Thus, to 
ensure a bounded delay, the guaranteed amount of 
bandwidth RiD must be greater than or equal to the arrival 
rate of total input downstream flow ݎҧ௜஽. As a result, by 
applying Eqs. (12) and (9) we obtain: 



ܴ௜஽ ൒ ҧ௜஽ݎ = כ௜஽ݎ = ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · ҧுݎ = 

ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ · ௗ௔௧௔ݎ

(16)

for ∀i, 0 ≤ i < ܪ௦௜௡௞. 
Note that it is possible to determine the total number of 

routers in a network using Eq. (16) by having i = H and ݎҧு = 1, which is expressed as: ߑሺ ௥ܰ௢௨௧௘௥ெ஺௑ , ሻܪ = ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝ு
௝ୀ଴  (17)

Buffer requirements 
To avoid buffer overflow, the buffer of a downstream 

router at depth i must be able to store all incoming data, 
constrained by the arrival curve ߙത௜஽ሺݐሻ, until it is 
dispatched through the downstream link to a child router at 
depth i+1. The required buffer size QiD of the downstream 
router at depth i must be at least equal to the burst 
tolerance ܾ௜஽כ  of the output bound ߙ௜஽כ ሺݐሻ (see Figure 9). 
Hence, according to Eq. (13) we get: ܳ௜஽ = ܾ௜஽כ = ܾ௜஽כ ஻௎ோௌ் ൅ ܾ௜஽כ ௎௉_௅஺் ൅ ܾ௜஽כ ஽ைௐே_௅஺் = (18)

ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · തܾு ൅ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ െ 1ሻ · ෍ ௝ߜ ൅ ෍ ௝߬௜

௝ୀ଴
௜

௝ୀ଴
for ∀i, 0 ≤ i < ܪ௦௜௡௞. 

Observe that the required buffer size is the sum of three 
terms. The first term is the sum of burst tolerances bdata of 
the sensory data flows of all sensor nodes inside all 
sub-trees of a given router. The second and third terms 
represent the cumulative effect of the service latency at 
each depth for upstream and downstream flows, 
respectively. 

In case of a sink router at depth ܪ௦௜௡௞, the buffer 
requirement must be greater than or equal to the burst 
tolerance തܾሺுೞ೔೙ೖሻ஽ of total input flow ߙതሺுೞ೔೙ೖሻ஽ given by 
Eq. (14) or Eq. (15).  

5.2 End-to-end delay analysis 
The worst-case end-to-end delay is the delay bound of 

a data flow transmitted along the longest path in the 
network. There are two approaches to compute this 
queuing delay. 
Per-hop end-to-end delay 

The first approach consists in computing the per-hop 
delay bounds of the aggregate input flows, and then 
deducing the end-to-end delay bound as the sum of 
per-hop delays. According to Eq. (2), the delay bound 
between a parent router at depth i, which offers service 
curve ߚ௜஽ሺݐሻ to its total input downstream flow constrained 
by arrival curve ߙത௜஽ሺݐሻ, and its child router at depth i+1 is 

expressed as: ܦ௜஽ = തܾ௜஽ ܴ௜஽ ൅ ௜ܶ஽⁄ . In case of the upstream 
flow, the delay bound between a child router at depth i and 
its parent router at depth i-1 offering service curve ߚሺ௜ିଵሻ௎ሺݐሻ has been derived in [5], and is expressed as: ܦ௜௎ = തܾ௜௎ ܴሺ௜ିଵሻ௎ ൅ ሺܶ௜ିଵሻ௎ൗ . 

Hence, the maximum end-to-end delay is the sum of all 
per-hop delay bounds as follows: 

௘ଶ௘ெ஺௑ܦ = ௗ௔௧௔ܦ ൅ ෍ ௜௎ܦ ൅ ෍ ௜஽ுೞ೔೙ೖିଵܦ
௜ୀ଴

ு
௜ୀଵ (19)

where ܦௗ௔௧௔ = ܾௗ௔௧௔ ܴௗ௔௧௔ ൅ ௗܶ௔௧௔⁄  is the delay bound 
between an end-node and its parent router. 

This approach is a bit pessimistic, since the delay 
bound at each router is computed for the aggregation of 
input flows. Tighter end-to-end delay bounds can be 
computed for individual flows, as follows. 
Per-flow end-to-end delay 

The idea of this approach is to derive the service curves 
offered to an individual flow F by the routers along the 
path, using the aggregate scheduling theorem in Eq. (4), 
and then deduce the network-wide service curve for flow 
F based on the concatenation theorem. Finally, according 
to Eq. (2), the end-to-end delay bound of a given flow F 
will be computed using the network-wide service curve 
applied to the arrival curve of the input flow. The 
maximum end-to-end delay is equal to the delay bound of 
a data flow along the longest path in the network. The 
complete algorithm has been presented in [5], and it is 
valid for upstream as well as for downstream flows. 

6. Application to IEEE 802.15.4/ZigBee 
So far, we have presented the general methodology for 

providing timeliness guarantees in cluster-tree WSNs with 
mobile sink behaviour independently of any specific 
protocol. In this section, we show how to apply the 
aforementioned methodology to the specific case of IEEE 
802.15.4/ZigBee cluster-tree WSNs.  

6.1 IEEE 802.15.4/ZigBee protocols features 
The IEEE 802.15.4/ZigBee [6, 7] protocols have 

several appealing properties for WSNs. The MAC layer 
supports the beacon-enabled or non beacon-enabled 
modes. We only consider the beacon-enabled mode, since 
it has ability to provide timeliness guarantees by using the 
Guaranteed Time Slot (GTS) mechanism.  

In beacon-enabled mode, beacon frames are 
periodically sent by a central node, called PAN 
coordinator, to synchronize nodes that are associated with 
it and to describe the structure of the superframe  
 (Figure 4). The superframe, corresponding to the Beacon 
Interval (BI), is defined by the time between two 
consecutive beacons, and includes an active period and, 
optionally, a following inactive period. The active period, 
corresponding to the Superframe Duration (SD), is divided 
into 16 equally-sized time slots. Each active period can be 



further divided into a Contention Access Period (CAP) 
and an optional Contention Free Period (CFP). Within the 
CFP, Guaranteed Time Slots (GTSs) can be allocated to a 
set of child nodes. The CFP supports up to 7 GTSs and 
each GTS may contain multiple time slots. Each GTS can 
transfer data either in transmit direction, i.e. from child to 
parent (upstream flow), or receive direction, i.e. from 
parent to child (downstream flow).  

Figure 4. IEEE 802.15.4 superframe structure. 

The structure of the superframe is defined by two 
parameters, the Beacon Order (BO) and the Superframe 
Order (SO), as follows: ܫܤ = ݊݋݅ݐܽݎݑܦ݁݉ܽݎ݂ݎ݁݌ݑܵ݁ݏܽܤܽ · 2஻ைܵܦ = ݊݋݅ݐܽݎݑܦ݁݉ܽݎ݂ݎ݁݌ݑܵ݁ݏܽܤܽ · 2ௌை 

where aBaseSuperframeDuration = 15.36 ms assuming 
the 2.4 GHz ISM frequency band with 250 kbps data rate, 
and 0 ≤ SO ≤ BO ≤ 14.  

While IEEE 802.15.4 in beacon-enabled mode supports 
only star-based topologies, ZigBee standard has proposed 
its extension to cluster-tree based topologies. Note that 
each cluster is active during its SD. To avoid the collisions 
between multiple superframe durations, the appropriate 
scheduling of SDs must be used (Section 3.3). For the sake 
of simplicity, we assume that all clusters have the same 
duty cycle, and whole WSN is inside one collision 
domain. Hence, the TDCS is given by the non-overlapping 
sequence of equally-sized SDs (Figure 5), and the duration 
of a TDCS cycle is equal to BI. 

6.2 Guaranteed bandwidth of a GTS time slot 
The whole data transmission in a GTS, including the 

frame, inter-frame spacing (IFS) and potential 
acknowledgment, must be completed before the end of the 
GTS. The maximum time required for the whole 
transmission of a MAC frame, called MPDU (MAC 
Protocol Data Unit) is then expressed as:  ெܶ௉஽௎ = ௠௔௫ܷܦܲܯ ⁄ܥ ൅ ܵܨܫ ൅ ݊݋݅ݐܽݎݑܦݐܹ݅ܽ݇ܿܣ · ߗ
where MPDUmax is the user defined maximum size of the 
frame, C is the data rate (we assume 250 kbps), and Ω = 1 
for an acknowledged transmission or Ω = 0 for an 
unacknowledged transmission. The maximum number of 
MAC frames that can be transmitted during one time slot 
is expressed as: ܰெ௉஽௎ = ඌ ܶܵெܶ௉஽௎ඐ 

where TS is the duration of a time slot and is equal to 
SD/16. In the remaining time, a frame smaller than 
MPDUmax can be transmitted if the whole transmission can 
be completed before the end of the GTS. The transmission 
time of last frame is then expressed as: ௟ܶ௔௦௧ = ܶܵ െ ܰெ௉஽௎ · ெܶ௉஽௎ െ ܵܨܫ െ ݊݋݅ݐܽݎݑܦݐܹ݅ܽ݇ܿܣ · ߗ

Finally, assuming a full duty cycle (i.e. SO = BO) the 
guaranteed bandwidth of one GTS time slot is expressed 
as: ்ܴௌଵ଴଴% = ܰெ௉஽௎ · ௠௔௫ܷܦܲܯ ൅ ሺ ݔܽ݉ ௟ܶ௔௦௧, 0ሻ · ܦܵܥ (20)

For more details, interested readers are referred to [17]. 

6.3 Characterization of the service curve 
Each parent router must reserve a GTS with enough 

time slots for each of its child nodes (requiring guaranteed 
service). For downstream data link, a parent router at 
depth i must reserve a GTS with ௜ܰ஽்ௌ time slots in receive 
direction to its child router at depth i+1 such that the 
resulting link bandwidth is greater than or equal to its total 
input arrival rate ݎҧ௜஽. It results that: 

௜ܰ஽்ௌ = ඄ ҧ௜஽்ܴௌඈ (21)ݎ

Hence, a GTS with ௜ܰ஽்ௌ time slots provides rate-latency 
service ߚோ೔்೔ሺݐሻ, where ܴ௜ = ௜ܰ஽்ௌ · ்ܴௌ is the guaranteed 
bandwidth and Ti is the service latency. 

The service latencies depend on the TDCS such that 
their worst-case values are achieved for the worst-case 
TDCS of a data flow along the longest path in a WSN. Let 
us consider the example in Figure 1, where an end-node of 
router R24 sends sensory data to the sink associated with 
the router R21 (i.e. a flow along the longest routing path). 
Thus, the corresponding worst-case TDCS may be given 
by the following sequence of superframe durations: SD11, 
SD01, SD12, SD24, SD23, SD21, SD22. The worst-case 
service latencies at each depth, except depth 0, are given 
by the distance between the active periods of consecutive 
clusters on the longest routing path to the sink. 

According to Figure 5, the worst-case service latency 
guaranteed to a flow over downstream data link at given 
depth is expressed as: 

- the service latency guaranteed by a router at depth 0 
to the child router at depth 1 (priority rule, Section 
3.3):  ଴ܶ஽ = ሺ ௥ܰ௢௨௧௘௥ெ஺௑ െ 1ሻ · ଴ܰ௎்ௌ · ܶܵ 

- the service latency guaranteed by a router at depth i 
to the child router at depth i+1, for ∀i, 0 < i < Hsink:  ௜ܶ஽ = ܫܤ െ ܦܵ െ ൫ ௜ܰ஽்ௌ െ ሺܰ௜ିଵሻ஽்ௌ ൯ · ܶܵ

 



Figure 5. The worst-case service latencies for a flow along the longest path in the WSN related to the example in Figure 1. 

 

6.4 IEEE 802.15.4/ZigBee WSN setup 
For our experimental scenario, we consider a simple 

cluster-tree WSN corresponding to the configuration 
where ܪ = 2, ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ = 1, ௥ܰ௢௨௧௘௥ெ஺௑ = 2. For the sake of 
simplicity, only end-nodes are equipped with sensing 
capability (i.e. S = 0) and generate data flows bounded by 
the arrival curve ߙௗ௔௧௔ሺݐሻ. We assume a minimum possible 
value of SO (e.g. SO = 4), imposed by some technological 
limitations [25], namely due to the non-preemptive 
behaviour of the TinyOS [21] operating system. 
According to Eq. (17), the total number of routers is equal 
to 7. Hence, BO must be set such that at least 7 SDs with 
SO = 4 can fit inside the BI without overlapping. In 
general, we obtain: ܫܤ ൒ ሺߑ ௥ܰ௢௨௧௘௥ெ஺௑ , ሻܪ · ܦܵ ௠௜௡ܱܤ  ֞ = ሺߑଶሺ݃݋݈ڿ ௥ܰ௢௨௧௘௥ெ஺௑ , ሻܪ · 2ௌைሻۀ

As a result for SO = 4, the minimum BO is equal to 7, 
such that a maximum of 27/24 = 8 SDs can fit in one BI. 
The maximum duty cycle of each cluster is then equal to 
(1/8) = 12.5 %. Note that to maximize the lifetime of a 
WSN, the lowest duty cycles must be chosen. On the other 
hand, low duty cycles enlarge end-to-end delays. Hence, 
long lifetime is in contrast to the fast timing response of a 
WSN, so a trade-off must be found. 

According to [6], the minimum CAP is equal to 7.04 
ms, assuming the 2.4 GHz ISM band, which corresponds 
to 1 time slot with SO = 4. The remaining slots can be 
allocated for GTSs. Hence, the maximum CFP length is 
equal to LCFP = 15 time slots. A router cannot reserve more 
than LCFP time slots for 7 GTSs maximum, i.e. for its ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑  end-nodes and ௥ܰ௢௨௧௘௥ெ஺௑ child routers. Assuming 
that each end-node requires allocation of a GTS with ௗܰ௔௧௔்ௌ  
time slots (i.e. rdata ≤ ௗܰ௔௧௔்ௌ ·RTS) from its parent router, then 
each child router can allocate a GTS with the maximum 
number of time slots equal to: උ൫ܮ஼ி௉ െ ௗܰ௔௧௔்ௌ · ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൯/ ௥ܰ௢௨௧௘௥ெ஺௑ ඏ

According to Eq. (16), the arrival rate rdata must not 
exceed the maximum bandwidth that a parent router can 
reserve. Obviously, due to the cumulative flow effect, the 
maximum bandwidth will be required by the sink router. 

Hence, the corresponding link bandwidth guaranteed by 
the parent router at depth ܪ௦௜௡௞ െ 1 to the sink router at 
depth ܪ௦௜௡௞ is equal to: ܴሺுೞ೔೙ೖିଵሻ = ቞ܮ஼ி௉ െ ௗܰ௔௧௔்ௌ · ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑

௥ܰ௢௨௧௘௥ெ஺௑ ቟ · ்ܴௌ (22)

As a result applying Eq. (16), we obtain the maximum 
arrival rate of the sensory data flow as: 

ௗ௔௧௔ெ஺௑ݎ =
ۈۉ
ۇۈ ቞ܮ஼ி௉ െ ௗܰ௔௧௔்ௌ · ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑

௥ܰ௢௨௧௘௥ெ஺௑ ቟ ·்ܴௌቀ∑ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝ሺுೞ೔೙ೖିଵሻ௝ୀ଴ ቁ · ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ௜௝൯ۋی
(23) ۊۋ

Note that the aforementioned expressions are valid for 
,௦௜௡௞ܪ∀ 1 ൑ ௦௜௡௞ܪ ൑ ௦௜௡௞ܪ The expressions for .ܪ = 0 have 
been already derived in [5]. The value of burst tolerance 
bdata is selected according to the burstiness of sensory data. 

7. Experimental evaluation 
In this section, we compare the worst-case theoretical 

results based on Network Calculus with the experimental 
results obtained through a test-bed based on IEEE 
802.15.4/ZigBee technologies. The analytical results are 
computed using a MATLAB model [19], and the 
experimental results are obtained using a real test-bed 
based on the TelosB motes [20]. 

7.1 Experimental setup 
The experimental test-bed (illustrated in Figure 6) 

consists of 14 TelosB motes running the TinyOS 1.x [21] 
operating system with our open source implementation of 
the IEEE 802.15.4/ZigBee protocol stack [22]. For 
debugging purposes, we have used the Chipcon CC2420 
packet sniffer [23] that provides a raw list of the 
transmitted packets, and the Daintree Sensor Network 
Analyzer (SNA) [24] that provides additional 
functionalities, such as the graphical topology of the 
network. 

We configured the application running on the sensor 
nodes to generate 3 bytes at the data payload. Hence, the 
maximum size of the MAC frame is equal to 
MPDUmax = 192 bits (for details see [17]). 



Figure 6. The test-bed deployment for Hsink =1. 

TinyOS 1.x flushes the reception buffer of the radio 
transceiver after processing the first arriving frame. Thus, 
the frames that arrive during the processing time of the 
first frame are discarded. This problem has been already 
reported and fixed in TinyOS 2.x. Since our 
implementation of IEEE 802.15.4/ZigBee protocol stack 
was built over TinyOS 1.x, we overcame the 
aforementioned problem by setting the inter-frame spacing 
(IFS) time (i.e. time between two consecutive frames) 
such that no frame arrives during the frame processing 
times. The experimental value of IFS equal to 3.07 ms was 
measured. 

According to Eq. (20), the bandwidth guaranteed by 
one time slot for SO = 4 is equal to 3.125 kbps with 100% 
duty cycle. Hence, in our experimental scenario with a 
12.5 % duty cycle (i.e. BO = BOmin = 7), the guaranteed 
bandwidth of one time slot is equal to 
RTS = 3.125 · 0.125 = 0.3906 kbps.  

Let us assume ௗܰ௔௧௔்ௌ = 1. Then according to Eq. (23), 
we obtain the maximum arrival rates of the sensory data 
flow as follows: 

௦௜௡௞ܪ ௗ௔௧௔ெ஺௑ = 456 bps forݎ - = 2 
௦௜௡௞ܪ ௗ௔௧௔ெ஺௑ = 684 bps forݎ - = 1 
௦௜௡௞ܪ ௗ௔௧௔ெ஺௑ = 911 bps forݎ - = 0 (root) 

As a result of ݎௗ௔௧௔ ൑ min ሺݎௗ௔௧௔ெ஺௑ሻ and ݎௗ௔௧௔ ൑ RTS, we 
consider an average arrival rate equal to rdata = 390 bps, 
which corresponds to 4 frames (192 bits each) generated 
during one Beacon Interval (BI = 1.96608 sec). We 
assume that the burst tolerance is equal to bdata = 576 bits, 
which corresponds to 3 frames generated at once. Hence, 
each sensory data flow is bounded by arrival curve ߙௗ௔௧௔ሺݐሻ = 576 ൅ 390 ·  The frames can be generated as .ݐ
constant bitrate (CBR) or variable bitrate (VBR) traffic 
upper bounded by the arrival curve ߙௗ௔௧௔ሺݐሻ (Figure 7). 

Finally, let us summarize the complete network setting: 
- ௥ܰ௢௨௧௘௥ெ஺௑ = 2 
- ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ = 1 
ܪ - = 2 
- SO = 4 (SD = 245.76 ms) 
- BO = 7 (BI = 1966.08 ms) 
- Duty Cycle = 12.5 % 

- MPDUmax = 192 bits 
- rdata = 390 bits 
- bdata = 576 bits 
- IFS = 3.07 ms 
- LCFP = 15 
- S = 0  

We assume the worst-case TDCS of a flow along the 
longest routing path from router R24 to the sink (Figure 1) 
given by the following sequence of superframe durations: 
SD11, SD01, SD12, SD24, SD23, SD21, SD22. Note that we 
consider only unacknowledged transmissions. 

Figure 7. The sensory traffic generation. 

7.2 Experimental vs. theoretical results 
Buffer requirements 

Figure 8 shows the theoretical worst-case buffer 
requirements as compared to the maximum values 
obtained through real experimentation, for ܪ௦௜௡௞ = 2.  

Figure 8. Buffer requirements. 

First, the theoretical buffer requirements are divided 
into three parcels according to their origin, as already 
shown in Section 4.2. Observe that the cumulative effect 
of the burst is more important than the cumulative effect 
of the service latencies. The effect of the service latencies 
may be more important for other setting of bdata and rdata. 
So, the different settings of the sensory arrival curve affect 
the buffer requirements. The minor effect of the upstream 
service latency at depth 0 is given by the priority rules 
(Section 3.3), such that the data arriving during the 
transmit GTS (i.e. upstream flow) are stored in the root 
until the receive GTS (i.e. downstream flow), at the end of 
the same SD, is active and data is dispatched (Figure 5).  

The next observation confirms that the theoretical 
values upper bound the experimental values. The 
pessimism of the theoretical bounds is justified by the fact 
that the Network Calculus analytical model is based on a 
continuous approach (arrival and service curves are 
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continuous) in contrast to the real stepwise behaviour of 
flows and services in the test-bed. In practice, the data is 
actually transmitted only during its GTS, while in the 
analytical model we consider a continuous data flow 
during the whole BI, since it represents the average rate 
and not the instantaneous rate. Figure 9 illustrates the 
problem and shows the arrival and service curves of a data 
flow sent by an end-node to its parent router. The burst of 
the outgoing data flow ܾௗ௔௧௔כ  (Eq. (5)) is equal to ܳ௠௔௫்ு , in 
case of the analytical model, or ܳ௠௔௫ா௑௉ , in the experimental 
case. Due to the cumulative flow effect, the discrepancy 
between theoretical (ܳ௠௔௫்ு ) and experimental (ܳ௠௔௫ா௑௉ ) values 
of buffer requirement increases with depth. The 
rate-latency service curve used in our analysis results from 
a trade-off between computing complexity and pessimism.  

Figure 9. Theoretical vs. experimental data traffic. 

The numerical values of theoretical worst-case as well 
as experimental maximum buffer requirements are 
summarized in Table 1. The bandwidth requirements 
given by Eq. (16) and the corresponding number of time 
slots are also presented. In Tables 1 and 2, U means 
upstream router at depth i or upstream link to a router at 
depth i, and D means downstream router or downstream 
link from a router at depth i. 

Table 1 
Buffer Requirements: Theoretical vs. Experimental Results 

  depth 
theoretical results  

(worst-case values) 
experimental results
(maximum values) 

Ri [kbps] ௜்ܰ ௌ Qi [kbits] Qi [kbits] ܪ௦௜௡௞ = 0 
(root) 

0 U 1.7 3 15.995 5.376 
1 U 0.39 1 7.329 2.304 
2 U — — 2.008 0.768 

௦௜௡௞ܪ = 1 
 

0 D 1.56 4 8.667 3.072 
U 1.17 3 — — 

1 D — — 14.02 5.376 
U 0.39 1 7.257 2.304 

2 U — — 2.008 0.768 

௦௜௡௞ܪ = 2 
 

0 D 1.56 4 8.667 3.072 
U 1.17 3 — — 

1 D 2.34 6 15.966 4.608 
U 0.39 1 7.257 2.304 

2 D — — 17.3 5.376 
U — — 2.008 0.768 

end-node 0.39 1 1.337 1.344 

Observe in Table 1 that end-nodes have the smallest 
buffer requirement as they are the leaves of the tree, and 
that the buffer requirement grows in direction of the sink 
router. Since the sink can be associate with any router and 
in order to avoid buffer overflow, all routers at depth i 
should allocate a buffer of capacity greater or equal to the 
worst-case buffer requirement at given depth i (e.g. all 
router at depth 0 allocate a buffer of capacity equal to 
15.995 kbits), which effectively demonstrates how these 
analytical results can be used by a system designer. 
Delay bounds 

In Figure 10, we compare the worst-case, maximum 
and average values of per-hop delay bounds in each router, 
and the end-to-end delay bounds for ܪ௦௜௡௞ = 2. A first 
observation confirms that theoretical values upper bound 
the experimental values. The difference between 
theoretical worst-case (ܦ௠௔௫்ு ) and experimental maximum 
 delays (Figure 9) is due to the aforementioned (௠௔௫ா௑௉ܦ)
continuous and stepwise behaviours of the analytical 
model and test-bed, respectively. The experimental delays 
comprise mainly the service latencies (Figure 9) 
decreasing in the direction of the sink (Figure 5). Hence, 
the maximum per-hop delays also decrease in the direction 
of the sink, as can be observed in Figure 10. The low 
downstream delay at depth 0 results from the priority rule 
(Section 3.3). The end-to-end delays bounds are quite 
high, even though the bdata and rdata are low. This is mainly 
due to high value of SO = 4 (i.e. BI = 1.966 sec). Hence, 
the end-to-end delay bounds can be reduced using lower 
values of SO or higher bandwidth guarantees, using lower 
IFS, for example.  

Figure 10. Delay bounds. 

Observe also that the worst-case end-to-end delay 
obtained by the per-flow approach offers less pessimism 
than the delay from the per-hop approach.  

Table 2 presents the worst-case, maximum and average 
numerical values of per-hop and per-flow delay bounds, 
and the end-to-end delays for given sink positions. Note 
that the average values were computed from the set of 15 
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measurements, involving 1155 frames each. The 
theoretical worst-case end-to-end delays are obtained as 
the sum of per-hop delays using Eq. (19) (first term), or by 
per-flow approach (Section 5.2), which results in the 
family of service curves as a function of θ ≥ 0. In our 
analysis we assume ߠ = ܶ ൅ ሺܾଶ ܴ⁄ ሻ as a trade-off between 
computation complexity and optimality. The 
determination of the optimal service curve, leading to the 
lowest worst-case delay, will be addressed in future work.  

Table 2 
Delay Bounds: Theoretical vs. Experimental Results 

  depth 
theoretical results  

(worst-case values) 
experimental results 

maximum average 
Di [sec] Di [sec] Di [sec] ܪ௦௜௡௞ = 0 

(root) 

1 U 6.257 1.764 1.308 
2 U 5.143 1.812 1.602 
De2e 14.82/9.69 7.154 4.952 ܪ௦௜௡௞ = 1 

 

0 D 5.547 0.104 0.099 
1 U 6.195 1.76 1.728 
2 U 5.143 1.809 1.602 
De2e 20.31/10.53 7.251 5.471 

௦௜௡௞ܪ = 2 
 

0 D 5.547 0.104 0.099 

1 D 6.814 1.812 1.321 
U 6.195 1.766 1.728 

2 U 5.143 1.814 1.135 
De2e 27.13/13.65 9.074 6.325 

end-node (Ddata) 3.425 3.578 2.042 

8. Conclusions and future work 
In this paper, we tackled the worst-case dimensioning 

of cluster-tree wireless sensor networks (WSN) assuming 
that the data sink can be mobile, i.e. can be associated to 
any router in the sensor network. We provided a system 
model, an analytical methodology and a software tool that 
enables system designers to dimension and analyze these 
networks assuming an error-free channel. In this way, it is 
possible to guarantee the routers’ buffer size to avoid 
buffer overflows and to minimize each cluster’s duty cycle 
(maximizing nodes’ lifetime) still satisfying that 
messages’ deadlines are met. 

Importantly, we showed how it is possible to instantiate 
our generic methodology in IEEE 802.15.4/ZigBee, which 
are promising technologies for WSN applications. We also 
developed a 7 clusters test-bed based on 
Commercial-Off-The-Shelf technologies, namely TelosB 
motes [20] running our open-ZB protocol stack [22] over 
TinyOS [21]. This test-bed enabled us to assess the 
pessimism of our worst-case theoretical results (buffer 
requirements and message end-to-end delays), by 
comparing these to the maximum and average values 
measured in the experiments. 

Ongoing and future works include improving the 
current methodology to encompass clusters operating at 
different duty-cycles and to provide a model that enables 
real-time control actions, i.e. the sink assuming the role of 
controlling sensor/actuator nodes. 
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