
Real-Time Communications over Cluster-Tree Sensor Networks with Mobile Sink
Behaviour

Petr Jurčík1, Ricardo Severino1, Anis Koubâa1,2, Mário Alves1, Eduardo Tovar1

1CISTER/IPP-HURRAY Research Unit, Polytechnic Institute of Porto (ISEP/IPP), Porto, Portugal
2Al-Imam Muhammad Ibn Saud University, CCIS Department, Riyadh, Saudi Arabia

{petr, rars, aska, mjf, emt}@isep.ipp.pt

Abstract
·Modelling the fundamental performance limits of

Wireless Sensor Networks (WSNs) is of paramount
importance to understand the behaviour of WSN under
worst-case conditions and to make the appropriate design
choices. In that direction, this paper contributes with a
methodology for modelling cluster-tree WSNs with a
mobile sink. We propose closed-form recurrent
expressions for computing the worst-case end-to-end
delays, buffering and bandwidth requirements across any
source-destination path in the cluster-tree assuming error
free channel. We show how to apply our theoretical results
to the specific case of IEEE 802.15.4/ZigBee WSNs.
Finally, we demonstrate the validity and analyze the
accuracy of our methodology through a comprehensive
experimental study, therefore validating the theoretical
results through experimentation.

1. Introduction
Wireless Sensor Networks (WSNs) emerge as enabling

infrastructures for large-scale distributed embedded
systems. Timeliness is an important requirement to be
fulfilled in these systems. However, issues such as large
scale and communication/computing and energy
limitations pose important difficulties in guaranteeing a
correct behaviour of these systems.

Evaluating the performance limits of WSNs is therefore
a crucial task, particularly when the network is expected to
operate under worst-case conditions [1]. For achieving
real-time communications over sensor networks, it is
mandatory to rely on deterministic routing and MAC
(Medium Access Control) protocols. Usually, these
networks use hierarchical logical topologies such as
cluster-tree or hexagonal (e.g. [2-4]). Issues such as the
use of contention-free MAC protocols (e.g. time division
or token passing) and the possibility of performing
end-to-end resource reservation contrast with what can be
achieved in mesh-like topologies, where contention-based
MACs and probabilistic routing protocols are used.

· This work was partially funded by FCT under the CISTER Research

Unit (FCT UI 608), PLURALITY and CMU-PT projects,
ARTIST2/ARTISTDesign NoEs., and by the Czech Republic MPO
project (61 03001).

In a previous work [5], the authors have provided a
methodology and closed-form expressions to dimension
the network resources in a cluster-tree WSN with a static
sink. The sink – a central point that collects all sensory
data – was assumed to be statically attached to the root.
That work aimed at evaluating the worst-case network
performance assuming a cluster-tree topology of balanced
height and load. This symmetry property was explored to
derive per-hop and end-to-end resource requirements in
addition to the worst-case delays of upstream flows (i.e.
from child nodes to the root).

However, while the static sink behaviour is adequate
for root-centric WSN applications (e.g. a surveillance
system delivering alarms to a central station), other
applications may impose or benefit from collecting data at
different network locations (e.g. a doctor with a hand-held
computer collecting patients’ status). Therefore, in this
paper we investigate the worst-case resource dimensioning
and analysis of cluster-tree WSNs with mobile sink
behaviour assuming an error free channel. In practice, this
assumption does not hold, but theoretical results are
almost likely to be valid in interference free and “clean”
environments (e.g. outdoor and open space areas).

We consider the sink as an autonomous entity that does
not make part of the static cluster-tree WSN, but can be
associated to any of its routers through any (wired or
wireless) communication means. Thus, the sink mobility
does not impact the WSN topology, but affects the data
flow destination (any router in the WSN). Contrarily to
[5], in this paper we address not only upstream flows (sink
in the root) but also downstream flows (sink not in the
root), thus achieve a more complete analysis, yet more
complex.

For the sake of simplicity and space, this paper address
neither mobility management issues (namely how routes
must be updated upon mobility of the sink) nor the impact
of this procedure on the worst-case analysis (potential
network inaccessibility times). The paper proposes and
describes a system model, an analytical methodology and
a software tool that permit the worst-case dimensioning
and analysis of cluster-tree WSNs. In this way, it is
possible to guarantee the routers’ buffers size to avoid
overflows and to minimize each cluster’s duty cycle

(maximizing nodes’ lifetime) still satisfying that
messages’ deadlines are met.

Importantly, we show how to instantiate our generic
methodology to IEEE 802.15.4/ZigBee [6, 7] protocols,
which are very promising technologies for WSNs (In fact,
in 2007, 7 million IEEE 802.15.4-enabled chips were sold,
an increase of 1400% from 2004 [7]). Finally, we assess
the validity of our theoretical model by comparing
worst-case results (buffer requirements and message
end-to-end delays) with the maximum and average values
measured through an experimental test-bed based on
Commercial-Off-The-Shelf technologies.
Contributions of this paper

(1) We provide a generic system model, encompassing
the cluster-tree topology model and the data-flow
model; we also identify the worst-case cluster
scheduling for any location of the sink (Section 3).

(2) We present a methodology, based on Network
Calculus, to characterize input and output flows in
each router in the cluster-tree WSN (Section 4) and
to derive upper bounds on buffer requirements and
per-hop and end-to-end delays (Section 5).

(3) We show how to apply our methodology to
dimension IEEE 802.15.4/ZigBee cluster-tree
WSNs (Section 6).

(4) We demonstrate the validity of our methodology
through an experimental test-bed (Section 7).

Other related work
The evaluation of fundamental performance limits of

WSNs has been addressed in several research works [1-3].
In [1], the authors evaluated the asymptotic behaviour of
operational lifetime and energy-constrained capacity of
sensor networks. In [2], the authors have evaluated the
real-time capacity of multi-hop WSNs, identifying how
much real-time data the network can transfer by their
deadlines. A capacity bound has been derived for (ideal)
MAC protocols with fixed priority packet scheduling
mechanisms. In [3], the authors have analyzed the
fundamental limits for acceptable loads, utilization, and
delays in multi-hop sensor networks with linear and grid
topologies, in case of all sensor nodes contribute equally
to the network load.

The worst-case analysis and resource dimensioning of
WSNs using Network Calculus has been pursued by
Schmitt et al. ([10-12]), who proposed the Sensor Network
Calculus methodology. In [10], Sensor Network Calculus
was introduced and basic components such as arrival and
service curves were defined. The system model assumes
generic tree-based topologies with nodes transmitting
sensor data towards the sink that is associated with the
root. The authors have also proposed a general iterative
procedure to compute the network internal flows and,
subsequently, resource requirements and delay bounds. On
the contrary, our work provides recurrent equations to
avoid iterative complex and time consuming
computations, which are not suitable for large-scale

WSNs. In [11], the previous Sensor Network Calculus
framework was extended to incorporate in-network
processing features (e.g. data aggregation) to reduce the
amount of data that has to be transmitted. In our work, we
abstract from the computational resources in the network
nodes and from data aggregation. In [12], the authors have
specified the worst-case topology (i.e. the topology that
exhibits the worst-case behaviour in terms of buffer
requirements, delay bounds and network lifetime) in
networks with random nodes deployment. Finding the
general worst-case topology is a complex task, thus their
methodology explores the worst-case tree constrained on
maximum depth and number of child routers that
maximizes the arrival curve of the root. As compared to
[10-12], our system model is more accurate for the
specific case of cluster-tree topologies and the sink can be
associated with any router in WSNs.

On the other hand, several research works have dealt
with sink mobility in order to minimize energy
consumption in the network [13, 14]. The proposed
approaches use random, predictable or controlled mobility
of one or more sinks [13]. Four strategies (random,
geographically, intelligent and genetic algorithm-based
strategies) focusing on optimal sink placement for
minimizing the worst-case delay as well as maximizing
the lifetime of a WSN have been introduced in [14].
Conversely, in our work we compute the worst-case delays
and resource requirements for given sink positions.

2. Background on Network Calculus
Network Calculus [9] is a mathematical methodology

based on min-plus algebra that applies to the deterministic
analysis of queuing/flows in the networks. This section
briefly introduces the aspects that are most significant to
this paper. For additional details please refer to [9, 17].

A basic system model S in Network Calculus consists
of a buffered FIFO node with the corresponding
transmission link. For a given data flow, the input function
R(t) is a cumulative number of bits that have arrived to
system S in the time interval (0, t). The output function
R*(t) is the number of bits that have left S in the same
interval (0, t). An arrival curve α (t) upper bounds the
input function of a system S such that for ∀s, 0 ≤ s ≤ t,
R(t) - R(s) ≤ α (t - s). A service curve β (t) represents a
lower bound on the transmitted cumulated flow, thus for
∀t there exists t0 ≤ t such that R*(t) - R*(t0) ≥ β (t - t0). The
knowledge of the arrival and service curves enables us to
determine performance bounds, namely the delay bound
Dmax given by the maximum horizontal distance between
α (t) and β (t), which represents the worst-case delay of
the message traversing system S, and the backlog bound
Qmax given by the maximum vertical distance between
α (t) and β (t), which represents the minimum buffer size
requires inside S. These concepts are shown in Figure 9.

So far, we have handled a system S as a single buffered
node. However, system S might also be a sequence of

nodes or even a complete network. In this case, the
concatenation theorem enables us to investigate serial
nodes in sequence as a single node.

Concatenation Theorem. Assume a flow with input
function R(t) traverses system S1 and S2 in sequence,
where S1 offers service curve β1 (t) and S2 offers β2 (t).
Then the concatenation of these two systems offers the
following single service curve β (t) to the traversing flow: ߚሺݐሻ = ሺߚଵ۪ߚଶሻሺݐሻ (1)

where ⊗ is the min-plus convolution defined for f, g ∈ F,
where F is the set of wide-sense increasing functions, as: ሺ݂۪݃ሻሺݐሻ = ݂݅݊଴ஸ௦ஸ௧ሼ݂ሺݐ െ ሻݏ ൅ ݃ሺݏሻሽ; ݐ׊ ݎ݋݂ ൒ 0

The accuracy of the worst-case bounds depends on how
tightly the selected arrival and service curves follow the
real network behaviour. Different types of arrival and
service curves have been proposed in Network Calculus
(e.g., [9, 10]). However, the (b, r) arrival curve and
rate-latency service curve are the most used in such
network models. The (b, r) arrival curve is defined as
α (t) = b + r·t for ∀t > 0, where b is called burst tolerance,
and r is the average data rate. The rate-latency service
curve is defined as βR,T (t) = R·(t-T)+, where R ≥ r is the
guaranteed link bandwidth, T is the maximum latency of
the service, and (x)+ = max(0, x). These curves lead to a
fair trade-off between computing complexity and
approximation accuracy of the real system behaviour.

Hereafter, we consider a data flow constrained by the
(b, r) arrival curve α (t) and traversing system S with a
rate-latency service curve βR,T (t). Then, the guaranteed
performance bounds Dmax and Qmax (see Figure 9 for
additional intuition) are easily computed as: ܦ௠௔௫ = ௕ோ ൅ ܶ ܳ௠௔௫ = ܾ ൅ ݎ · ܶ (2)

With Network Calculus, it is also possible to express an
upper bound of the outgoing flow with output function
R*(t), called output bound, as (the proof in [16]): כߙሺݐሻ = ሻݐோ,்ሺߚሻۨݐሺߙ = ሻݐሺߙ ൅ ݎ · ܶ ൒ ሻݐሺߙ (3)
where ۨ is the min-plus deconvolution defined as: ሺ݂ۨ݃ሻሺݐሻ = ௦ஹ଴݌ݑݏ ሼ݂ሺݐ ൅ ሻݏ െ ݃ሺݏሻሽ; ݐ׊ ݎ݋݂ א ܴ ܽ݊݀ ݂, ݃ א ࡲ

Due to the accumulation of the data flows in the
direction of the sink, the nodes offer a service curve β (t)
to this aggregated data flow. Thus, the delay and backlog
bounds can be computed for the entire aggregate data flow
at each node. Using the aggregate scheduling theorem,
tighter bounds can be computed for individual flows
traversing the network. In this paper, we use both
approaches to compare the results.

Aggregate Scheduling. Consider a node multiplexing
two data flows, 1 and 2, in FIFO order. Assume that
flow 2 is constrained by the (b, r) arrival curve α2 (t) and
the node guarantees a service curve βR,T (t) to the

aggregate of these two flows. Define the family of
functions as: ߚଵሺݐ, ሻߠ = ሺܴ െ ଶሻݎ ቈݐ െ ቆܾଶ ൅ ଶሺܶݎ െ ሻܴߠ െ ଶݎ ൅ ܶቇ቉ା . 1ሼ௧வఏሽ (4)

Then, for any θ ≥ 0, ߚଵሺݐ, ሻ is a service curve guaranteedߠ
for flow 1.

3. System model
This section defines the cluster-tree topology and

data-flow models that will be considered in the analysis. It
also elaborates on the worst-case cluster scheduling; that
is, the time sequence of clusters’ active periods leading to
the worst-case end-to-end delay for a message to be routed
to the sink.

3.1 Cluster-tree topology model
Cluster-tree WSNs feature a tree-based logical

topology, where nodes are organized in different groups,
called clusters. Each node is connected to one node at
lower depth, called parent node, and can be connected to
multiple nodes at upper depth, called child nodes.

Consider Figure 1. The cluster-tree topology contains
two main types of nodes. First, the nodes that can
associate with previously associated nodes and can
participate in the multi-hop routing are referred to as
routers (Rij, i.e router j at depth i). Second, the leaf nodes
that do not allow association of other nodes and do not
participate in routing are referred to as end-nodes (N). The
router that has no parent is called root (it might hold
special functions such as identification, formation and
control of the entire topology). Routers and end-nodes can
both have sensing capabilities. Therefore they are
generally referred to as sensor nodes. Each router forms its
cluster and is referred to as cluster-head of this cluster.

In this paper we aim at specifying the worst-case
cluster-tree topology, i.e. the network topology
configuration that leads to the worst-case performance.
This means that a dynamically changing cluster-tree WSN
can assume different configurations, but it can never
exceed the worst-case topology, in terms of maximum
depth and number of child routers/end-nodes. Thus, the
worst-case cluster-tree topology is graphically represented
by a rooted balanced directed tree [15] defined by the
following three parameters:

 Height of the tree, i.e. the maximum number of :ࡴ -
logical hops from the deepest router to the root. A
tree with only a root has a height of zero.

ࢄ࡭ࡹࢋࢊ࢕࢔_ࢊ࢔ࢋࡺ - : Maximum number of end-nodes that can
be associated to a router.

ࢄ࡭ࡹ࢘ࢋ࢚࢛࢕࢘ࡺ - : Maximum number of child routers that can
be associated to a parent router.

The depth of a node is defined as the number of logical
hops from that node to the root. The root is at depth zero,
and the maximum depth of an end-node is H+1.

Figure 1. The cluster-tree topology and data-flow models.

Note that the sink is a special type of node that gathers
the sensory data from all sensor nodes inside the network.
Unlike previous work, we relax the assumption that the
sink is only associated with the root and consider the sink
to be an autonomous and topology-independent mobile
node. The mobile behaviour means that a sink moves
arbitrarily within a static cluster-tree WSN and can be
associated with any router within communication range.
The router, to which the sink is in a given moment
associated, is referred to as sink router. There can be more
than one mobile sink in a WSN, but we assume that only
one is active (i.e. gathers the sensory data) at a given time.
We specify another parameter, ܪ௦௜௡௞ א ሺ0, ሻ, to representܪ
the depth at a given moment of the sink router in a
cluster-tree topology. Note that if the sink is associated
with the root, i.e. ܪ௦௜௡௞ = 0, the network contains only
upstream flows. This case has already been analysed in
[5]. In this paper, we analyze the case where ܪ௦௜௡௞ ൐ 0.

Our terminology and conventions are as illustrated in
Figure 1, corresponding to a configuration where ܪ = 2, ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ = 3, ௥ܰ௢௨௧௘௥ெ஺௑ = 2, and ܪ௦௜௡௞ = 2. Note that a
cluster-tree WSN may contain additional nodes per router
than those defined by ௥ܰ௢௨௧௘௥ெ஺௑ and ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ parameters.
However, these additional nodes cannot be granted
guaranteed resources.

3.2 Data-flow model
In this paper, we assume that all sensory data is

exclusively sent to the sink. All sensor nodes are assumed
to sense and transmit data upper bounded by the arrival
curve ߙௗ௔௧௔ሺݐሻ = ܾௗ௔௧௔ ൅ ௗ௔௧௔ݎ · In case of different data .ݐ
flows, ߙௗ௔௧௔ሺݐሻ is considered to represent the upper bound
of the highest flow in a network. This may introduce some

pessimism to the analysis if the variance between data
flows is significant.

Each end-node is granted a service guarantee from its
parent router corresponding to the rate-latency service
curve ߚௗ௔௧௔ሺݐሻ = ܴௗ௔௧௔ · ሺݐ െ ௗܶ௔௧௔ሻା. By applying Eq. (3)
to a flow constrained by the arrival curve ߙௗ௔௧௔ሺݐሻ and that
is granted a service curve ߚௗ௔௧௔ሺݐሻ, we obtain the output
arrival curve ߙௗ௔௧௔כ ሺݐሻ, which upper bounds the outgoing
data flow from any end-node: ߙௗ௔௧௔כ ሺݐሻ = ሻݐௗ௔௧௔ሺߙ ൅ ௗ௔௧௔ݎ · ௗܶ௔௧௔ (5)

On the other hand, the amount of bandwidth allocated
by each router depends on the cumulative amount of data
at its inputs, which increases towards the sink. Thus, the
total input function R of each router depends on the depth,
and consists of the sum of the output functions R* of its
end-nodes and child routers. Additionally, the router itself
can be equipped with sensing capability producing a
traffic bounded by ߙௗ௔௧௔ሺݐሻ. Thus, the arrival curve
constraining the total input function R of a router at
general depth i is expressed as:

ത௜ߙ = ௗ௔௧௔ߙ ൅ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ · כௗ௔௧௔ߙ ൅ ෍ ேೝ೚ೠ೟೐ೝಾಲ೉כ௥௢௨௧௘௥ሺ௜ାଵ,௝ሻߙ
௝ୀଵ (6)

This result can then be used in Eq. (3). The outgoing
flow of a router at depth i is upper bounded by the output
arrival curve as follows: ߙ௜כ = ௜ିଵ (7)ߚത௜ۨߙ

Hence, the data-flow analysis consists in the
computation of the arrival curves ߙത௜ and ߙ௜כ, using
iteratively Eqs. (6) and (7), from the deepest routers until
reaching the sink. After that, the resource requirements of
each router, in terms of buffer requirement Qi and
bandwidth requirement Ri, and the worst-case end-to-end
delay bound of WSN are computed.

In cluster-tree WSNs where the sink can be associated
with a router other than the root, data flows may then be
redirected in the downstream directions. Data flows over
upstream links (called upstream flows) have already been
analysed in [5]. Data flows over downstream links (called
downstream flows), where data is sent from a parent router
to its child router, are analysed in this paper. In what
follows, the upstream and downstream flows are marked
by the subscripts U and D, respectively (e.g. ߙ௜௎כ כ௜஽ߙ ,). We
also assume two types of service curves (i.e. ߚ௜௎ for
upstream flows and ߚ௜஽ downstream flows) provided by
each parent router at depth i to its child routers at depth
i+1, and expressed as: ߚ௜௎ሺݐሻ = ܴ௜௎ · ሺݐ െ ௜ܶ௎ሻା ሻݐ௜஽ሺߚ = ܴ௜஽ · ሺݐ െ ௜ܶ஽ሻା (8)

To ensure the symmetry properties of the worst-case
cluster-tree topology assumed in our methodology, the
same downstream or upstream service curves must be
guaranteed to all downstream or upstream flows at a given
depth, respectively.

β
1U

α
2U

α
1U

β
0U

β 0D

α 0D

β d
at

a
α d

at
a

β 1
D

α 1
D

3.3 Time division cluster scheduling
In general, the radio channel is a shared communication

medium where more than one node can transmit at the
same time. In cluster-tree WSNs, messages are forwarded
from cluster to cluster until reaching the sink. The time
window of each cluster is periodically divided into an
active period (AP), during which the cluster-head enables
data transmissions inside its cluster, and a subsequent
inactive period, during which all cluster nodes may enter
low-power mode to save energy resources. To avoid
collisions between multiple clusters, it is mandatory to
schedule active periods of different clusters in an ordered
sequence, called Time Division Cluster Schedule (TDCS).
In other words, TDCS is equivalent to a permutation of
active periods of all clusters in a WSN such that no
inter-cluster interference occurs. In case of one collision
domain (i.e. all nodes hear each other), the TDCS must be
non-overlapping, i.e. only one cluster can be active at any
time. On the contrary, in a network with multiple collision
domains, the clusters from different non-overlapping
collision domains may be active at the same time.

Due to the cumulative flow effect, the amount of traffic
increases in the direction of the sink such that the
maximum flow is reached in the cluster to which the sink
is associated (e.g. cluster11 in Figure 1). Hence, the duty
cycles of the clusters closer to the sink should be higher
than the ones of the clusters that are farther from the sink,
to ensure efficient bandwidth utilization [18].

The TDCS significantly affects the resource
requirements and delay bounds in cluster-tree WSNs. The
number of feasible TDCSs in a network with n routers
inside one collision domain is equal to the number of
permutations, given by n factorial (n!). Note that for each
data flow originated in a given node, there is a
corresponding best-case/worst-case TDCS that
minimizes/maximizes the end-to-end delay of that flow,
respectively. Thus, it is impossible to determine a general
best-case or worst-case TDCS meeting the requirements of
all data flows. On one hand, the best-case TDCS of a data
flow originated in node R24 (Figure 1), for example,
comprises the consecutive sequence of active periods
corresponding to the ordered sequence of the clusters
traversed along the routing path from R24 to the sink. On
the other hand, the worst-case TDCS comprises the same
ordered sequence of active periods, but in the reverse
order, which means starting from the sink backward to R24.
The active periods of other clusters, which are not on the
routing path, are appended to the previously formed
sequence in arbitrary order such that a complete TDCS is
produced (see example in [17]). Using our methodology
based on the symmetry properties of the cluster-tree
model, the network resources of a WSN are dimensioned
for the worst-case TDCS of a data flow originated in the
end-node that is farthest from the sink (i.e., a flow along
the longest path in a WSN).

To reduce the resource requirements of the routers, we
introduce the following priority rule: “When a router
handles the links in different directions (e.g. R01 and R11 in
Figure 1), the incoming flows via upstream data links are
served before the outgoing flow via downstream data
link.” Using this rule, the end-to-end delay of an incoming
data flow can be reduced to at most one TDCS cycle
duration.

4. Input and output data flows analysis
In our model, we assume that the end-nodes have

sensing capabilities, but the sensing capability of routers is
optional. For an improved analysis, we introduce a binary
variable S whose value is equal to 1 if routers have sensing
capabilities; otherwise S is equal to 0.

The total input data flow of each router as shown in
Eq. (6) comprises, among other terms, the sum of the
output flows of its end-nodes and, optionally, its own
sensory data flow constrained by ߙௗ௔௧௔ሺݐሻ. This part of the
total input flow is the same for upstream and downstream
flows, hence we introduce the substitution: ߙതுሺݐሻ = ܵ · ሻݐௗ௔௧௔ሺߙ ൅ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ · כௗ௔௧௔ߙ ሺݐሻ

Thus, using Eq. (5) we get: ߙതுሺݐሻ = ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ · ሻݐௗ௔௧௔ሺߙ ൅ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ · ௗ௔௧௔ݎ · ௗܶ௔௧௔ (9)

where, ݎҧு = ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ · ௗ௔௧௔ is the resultingݎ
aggregate rate of ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ input data flows, and തܾு = ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ · ܾௗ௔௧௔ ൅ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ · ௗ௔௧௔ݎ ڄ ௗܶ௔௧௔ is the
burst tolerance. Note that ߙതுሺݐሻ is also equal to the total
input upstream flow of the deepest routers (at depth H).

4.1 Upstream data flows
In [5], the output and input upstream flows were

analyzed and derived in detail. Thus, here we only
summarize the final general recurrent expressions. The
arrival curve, constraining the total input upstream flow of
each router at depth i, is expressed as follows:

ത௜௎ߙ = ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௝ுି௜
௝ୀ଴ ቍ · തுߙ ൅ ෍൫ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௝ · ௜ା௝ିଵ൯ுି௜ߪ

௝ୀଵ (10)

for ∀i, 0≤ i ≤ H,
where

௡ߪ = ቌ ෍ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௞ுିሺ௡ାଵሻ
௞ୀ଴ ቍ · ҧுݎ · ௡ܶ௎

The output bound for the upstream data flow from each
child router at depth i, receiving a service curve ߚ௜ିଵሺݐሻ
from a parent router at depth i-1, is then expressed as: ߙ௜௎כ = ത௜௎ߙ ൅ ௜ିଵߪ =

ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௝ுି௜
௝ୀ଴ ቍ · തுߙ ൅ ෍൫ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௝ · ௜ା௝ିଵ൯ுି௜ߪ

௝ୀ଴
(11)

for ∀i, 0 < i ≤ H

Figure 2. The queuing system model for upstream and downstream flows.

4.2 Downstream data flows
In [17], we derive the arrival curve of the total input

downstream flow ߙത௜஽ and the upper bound of the output
downstream flow ߙ௜஽כ depth by depth, using the Network
Calculus methodology, starting from depth 0 (i.e. the
root). In our analysis, we consider the queuing model in
Figure 2. For the sake of space, here we only summarize
the final general recurrent expressions.

The arrival curve constraining the total input
downstream flow of a router at a given depth i, for
i = 0, ·····, (ܪ௦௜௡௞-1), is expressed as: ߙത௜஽ =

ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · തுߙ ൅ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ െ 1ሻ · ෍ ௝௜ߜ

௝ୀ଴ ൅ ෍ ௝߬௜ିଵ
௝ୀ଴

(12)

for ∀i, 0 ≤ i < ܪ௦௜௡௞,
where ߜ௡ = ෍ ሺሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௞ · ௞ା௡ሻுିሺ௡ାଵሻߪ

௞ୀ଴
௡ߪ = ቌ ෍ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻ௞ுିሺ௡ାଵሻ

௞ୀ଴ ቍ · ҧுݎ · ௡ܶ௎
 ߬௡ = ൭෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௞௡

௞ୀ଴ ൱ · ҧுݎ · ௡ܶ஽
The upper bound of the output downstream flow from a

parent router at depth i, providing a service curve ߚ௜஽ሺݐሻ,
towards its child router at depth i+1 is expressed as: ߙ௜஽כ = ത௜஽ߙ ൅ ߬௜= (13)

 ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · തுߙ ൅ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ െ 1ሻ · ෍ ௝௜ߜ

௝ୀ଴ ൅ ෍ ௝߬௜
௝ୀ଴

for ∀i, 0 ≤ i < Hୱ୧୬୩.
Note that the sink can be associated to the router at a

depth lower than the height of the cluster-tree, i.e. ܪ௦௜௡௞ ൏ or equal to the height of the (Figure 3.a) ܪ
cluster-tree, i.e. ܪ௦௜௡௞ = .(Figure 3.b) ܪ

In the case of ܪ௦௜௡௞ ൏ the arrival curve constraining ,ܪ
the total input downstream flow is expressed as:

തሺுೞ೔೙ೖሻ஽ߙ = തுߙ ൅ ௥ܰ௢௨௧௘௥ெ஺௑ · כሺுೞ೔೙ೖାଵሻ௎ߙ ൅ כሺுೞ೔೙ೖିଵሻ஽ߙ (14)

If ܪ௦௜௡௞ = the arrival curve constraining the total ,ܪ
input downstream flow is expressed as: ߙതሺுೞ೔೙ೖሻ஽ = തுߙ ൅ כሺுೞ೔೙ೖିଵሻ஽ߙ (15)

Figure 3. Possible locations of a sink router and
correspondent data flows.

5. Worst-case network dimensioning
Supporting time-sensitive WSN applications implies to

predict and guarantee maximum end-to-end
communication delays. To ensure bounded end-to-end
delays and to avoid buffer overflow, network resources
must be known in advance, and dimensioned along the
path from a source to a sink.

5.1 Per-router resources analysis
We aim at specifying the minimum bandwidth of each

downstream data links and the minimum buffer size at
each downstream router needed to store the bulk of data
incoming through the router’s inputs.
Bandwidth requirements

Consider a parent router at depth i providing a service
curve ߚ௜஽ሺݐሻ to its child router at depth i+1 (see Figure 1).
The total input downstream flow of the parent router is
constrained by the arrival curve ߙത௜஽ሺݐሻ and dispatched
through a downstream link to its child router. Thus, to
ensure a bounded delay, the guaranteed amount of
bandwidth RiD must be greater than or equal to the arrival
rate of total input downstream flow ݎҧ௜஽. As a result, by
applying Eqs. (12) and (9) we obtain:

ܴ௜஽ ൒ ҧ௜஽ݎ = כ௜஽ݎ = ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · ҧுݎ =

ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ൯ · ௗ௔௧௔ݎ

(16)

for ∀i, 0 ≤ i < ܪ௦௜௡௞.
Note that it is possible to determine the total number of

routers in a network using Eq. (16) by having i = H and ݎҧு = 1, which is expressed as: ߑሺ ௥ܰ௢௨௧௘௥ெ஺௑ , ሻܪ = ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝ு
௝ୀ଴ (17)

Buffer requirements
To avoid buffer overflow, the buffer of a downstream

router at depth i must be able to store all incoming data,
constrained by the arrival curve ߙത௜஽ሺݐሻ, until it is
dispatched through the downstream link to a child router at
depth i+1. The required buffer size QiD of the downstream
router at depth i must be at least equal to the burst
tolerance ܾ௜஽כ of the output bound ߙ௜஽כ ሺݐሻ (see Figure 9).
Hence, according to Eq. (13) we get: ܳ௜஽ = ܾ௜஽כ = ܾ௜஽כ ஻௎ோௌ் ൅ ܾ௜஽כ ௎௉_௅஺் ൅ ܾ௜஽כ ஽ைௐே_௅஺் = (18)

ቌ෍ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝௜
௝ୀ଴ ቍ · തܾு ൅ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ െ 1ሻ · ෍ ௝ߜ ൅ ෍ ௝߬௜

௝ୀ଴
௜

௝ୀ଴
for ∀i, 0 ≤ i < ܪ௦௜௡௞.

Observe that the required buffer size is the sum of three
terms. The first term is the sum of burst tolerances bdata of
the sensory data flows of all sensor nodes inside all
sub-trees of a given router. The second and third terms
represent the cumulative effect of the service latency at
each depth for upstream and downstream flows,
respectively.

In case of a sink router at depth ܪ௦௜௡௞, the buffer
requirement must be greater than or equal to the burst
tolerance തܾሺுೞ೔೙ೖሻ஽ of total input flow ߙതሺுೞ೔೙ೖሻ஽ given by
Eq. (14) or Eq. (15).

5.2 End-to-end delay analysis
The worst-case end-to-end delay is the delay bound of

a data flow transmitted along the longest path in the
network. There are two approaches to compute this
queuing delay.
Per-hop end-to-end delay

The first approach consists in computing the per-hop
delay bounds of the aggregate input flows, and then
deducing the end-to-end delay bound as the sum of
per-hop delays. According to Eq. (2), the delay bound
between a parent router at depth i, which offers service
curve ߚ௜஽ሺݐሻ to its total input downstream flow constrained
by arrival curve ߙത௜஽ሺݐሻ, and its child router at depth i+1 is

expressed as: ܦ௜஽ = തܾ௜஽ ܴ௜஽ ൅ ௜ܶ஽⁄ . In case of the upstream
flow, the delay bound between a child router at depth i and
its parent router at depth i-1 offering service curve ߚሺ௜ିଵሻ௎ሺݐሻ has been derived in [5], and is expressed as: ܦ௜௎ = തܾ௜௎ ܴሺ௜ିଵሻ௎ ൅ ሺܶ௜ିଵሻ௎ൗ .

Hence, the maximum end-to-end delay is the sum of all
per-hop delay bounds as follows:

௘ଶ௘ெ஺௑ܦ = ௗ௔௧௔ܦ ൅ ෍ ௜௎ܦ ൅ ෍ ௜஽ுೞ೔೙ೖିଵܦ
௜ୀ଴

ு
௜ୀଵ (19)

where ܦௗ௔௧௔ = ܾௗ௔௧௔ ܴௗ௔௧௔ ൅ ௗܶ௔௧௔⁄ is the delay bound
between an end-node and its parent router.

This approach is a bit pessimistic, since the delay
bound at each router is computed for the aggregation of
input flows. Tighter end-to-end delay bounds can be
computed for individual flows, as follows.
Per-flow end-to-end delay

The idea of this approach is to derive the service curves
offered to an individual flow F by the routers along the
path, using the aggregate scheduling theorem in Eq. (4),
and then deduce the network-wide service curve for flow
F based on the concatenation theorem. Finally, according
to Eq. (2), the end-to-end delay bound of a given flow F
will be computed using the network-wide service curve
applied to the arrival curve of the input flow. The
maximum end-to-end delay is equal to the delay bound of
a data flow along the longest path in the network. The
complete algorithm has been presented in [5], and it is
valid for upstream as well as for downstream flows.

6. Application to IEEE 802.15.4/ZigBee
So far, we have presented the general methodology for

providing timeliness guarantees in cluster-tree WSNs with
mobile sink behaviour independently of any specific
protocol. In this section, we show how to apply the
aforementioned methodology to the specific case of IEEE
802.15.4/ZigBee cluster-tree WSNs.

6.1 IEEE 802.15.4/ZigBee protocols features
The IEEE 802.15.4/ZigBee [6, 7] protocols have

several appealing properties for WSNs. The MAC layer
supports the beacon-enabled or non beacon-enabled
modes. We only consider the beacon-enabled mode, since
it has ability to provide timeliness guarantees by using the
Guaranteed Time Slot (GTS) mechanism.

In beacon-enabled mode, beacon frames are
periodically sent by a central node, called PAN
coordinator, to synchronize nodes that are associated with
it and to describe the structure of the superframe
 (Figure 4). The superframe, corresponding to the Beacon
Interval (BI), is defined by the time between two
consecutive beacons, and includes an active period and,
optionally, a following inactive period. The active period,
corresponding to the Superframe Duration (SD), is divided
into 16 equally-sized time slots. Each active period can be

further divided into a Contention Access Period (CAP)
and an optional Contention Free Period (CFP). Within the
CFP, Guaranteed Time Slots (GTSs) can be allocated to a
set of child nodes. The CFP supports up to 7 GTSs and
each GTS may contain multiple time slots. Each GTS can
transfer data either in transmit direction, i.e. from child to
parent (upstream flow), or receive direction, i.e. from
parent to child (downstream flow).

Figure 4. IEEE 802.15.4 superframe structure.

The structure of the superframe is defined by two
parameters, the Beacon Order (BO) and the Superframe
Order (SO), as follows: ܫܤ = ݊݋݅ݐܽݎݑܦ݁݉ܽݎ݂ݎ݁݌ݑܵ݁ݏܽܤܽ · 2஻ைܵܦ = ݊݋݅ݐܽݎݑܦ݁݉ܽݎ݂ݎ݁݌ݑܵ݁ݏܽܤܽ · 2ௌை

where aBaseSuperframeDuration = 15.36 ms assuming
the 2.4 GHz ISM frequency band with 250 kbps data rate,
and 0 ≤ SO ≤ BO ≤ 14.

While IEEE 802.15.4 in beacon-enabled mode supports
only star-based topologies, ZigBee standard has proposed
its extension to cluster-tree based topologies. Note that
each cluster is active during its SD. To avoid the collisions
between multiple superframe durations, the appropriate
scheduling of SDs must be used (Section 3.3). For the sake
of simplicity, we assume that all clusters have the same
duty cycle, and whole WSN is inside one collision
domain. Hence, the TDCS is given by the non-overlapping
sequence of equally-sized SDs (Figure 5), and the duration
of a TDCS cycle is equal to BI.

6.2 Guaranteed bandwidth of a GTS time slot
The whole data transmission in a GTS, including the

frame, inter-frame spacing (IFS) and potential
acknowledgment, must be completed before the end of the
GTS. The maximum time required for the whole
transmission of a MAC frame, called MPDU (MAC
Protocol Data Unit) is then expressed as: ெܶ௉஽௎ = ௠௔௫ܷܦܲܯ ⁄ܥ ൅ ܵܨܫ ൅ ݊݋݅ݐܽݎݑܦݐܹ݅ܽ݇ܿܣ · ߗ
where MPDUmax is the user defined maximum size of the
frame, C is the data rate (we assume 250 kbps), and Ω = 1
for an acknowledged transmission or Ω = 0 for an
unacknowledged transmission. The maximum number of
MAC frames that can be transmitted during one time slot
is expressed as: ܰெ௉஽௎ = ඌ ܶܵெܶ௉஽௎ඐ

where TS is the duration of a time slot and is equal to
SD/16. In the remaining time, a frame smaller than
MPDUmax can be transmitted if the whole transmission can
be completed before the end of the GTS. The transmission
time of last frame is then expressed as: ௟ܶ௔௦௧ = ܶܵ െ ܰெ௉஽௎ · ெܶ௉஽௎ െ ܵܨܫ െ ݊݋݅ݐܽݎݑܦݐܹ݅ܽ݇ܿܣ · ߗ

Finally, assuming a full duty cycle (i.e. SO = BO) the
guaranteed bandwidth of one GTS time slot is expressed
as: ்ܴௌଵ଴଴% = ܰெ௉஽௎ · ௠௔௫ܷܦܲܯ ൅ ሺ ݔܽ݉ ௟ܶ௔௦௧, 0ሻ · ܦܵܥ (20)

For more details, interested readers are referred to [17].

6.3 Characterization of the service curve
Each parent router must reserve a GTS with enough

time slots for each of its child nodes (requiring guaranteed
service). For downstream data link, a parent router at
depth i must reserve a GTS with ௜ܰ஽்ௌ time slots in receive
direction to its child router at depth i+1 such that the
resulting link bandwidth is greater than or equal to its total
input arrival rate ݎҧ௜஽. It results that:

௜ܰ஽்ௌ = ඄ ҧ௜஽்ܴௌඈ (21)ݎ

Hence, a GTS with ௜ܰ஽்ௌ time slots provides rate-latency
service ߚோ೔்೔ሺݐሻ, where ܴ௜ = ௜ܰ஽்ௌ · ்ܴௌ is the guaranteed
bandwidth and Ti is the service latency.

The service latencies depend on the TDCS such that
their worst-case values are achieved for the worst-case
TDCS of a data flow along the longest path in a WSN. Let
us consider the example in Figure 1, where an end-node of
router R24 sends sensory data to the sink associated with
the router R21 (i.e. a flow along the longest routing path).
Thus, the corresponding worst-case TDCS may be given
by the following sequence of superframe durations: SD11,
SD01, SD12, SD24, SD23, SD21, SD22. The worst-case
service latencies at each depth, except depth 0, are given
by the distance between the active periods of consecutive
clusters on the longest routing path to the sink.

According to Figure 5, the worst-case service latency
guaranteed to a flow over downstream data link at given
depth is expressed as:

- the service latency guaranteed by a router at depth 0
to the child router at depth 1 (priority rule, Section
3.3): ଴ܶ஽ = ሺ ௥ܰ௢௨௧௘௥ெ஺௑ െ 1ሻ · ଴ܰ௎்ௌ · ܶܵ

- the service latency guaranteed by a router at depth i
to the child router at depth i+1, for ∀i, 0 < i < Hsink: ௜ܶ஽ = ܫܤ െ ܦܵ െ ൫ ௜ܰ஽்ௌ െ ሺܰ௜ିଵሻ஽்ௌ ൯ · ܶܵ

Figure 5. The worst-case service latencies for a flow along the longest path in the WSN related to the example in Figure 1.

6.4 IEEE 802.15.4/ZigBee WSN setup
For our experimental scenario, we consider a simple

cluster-tree WSN corresponding to the configuration
where ܪ = 2, ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ = 1, ௥ܰ௢௨௧௘௥ெ஺௑ = 2. For the sake of
simplicity, only end-nodes are equipped with sensing
capability (i.e. S = 0) and generate data flows bounded by
the arrival curve ߙௗ௔௧௔ሺݐሻ. We assume a minimum possible
value of SO (e.g. SO = 4), imposed by some technological
limitations [25], namely due to the non-preemptive
behaviour of the TinyOS [21] operating system.
According to Eq. (17), the total number of routers is equal
to 7. Hence, BO must be set such that at least 7 SDs with
SO = 4 can fit inside the BI without overlapping. In
general, we obtain: ܫܤ ൒ ሺߑ ௥ܰ௢௨௧௘௥ெ஺௑ , ሻܪ · ܦܵ ௠௜௡ܱܤ ֞ = ሺߑଶሺ݃݋݈ڿ ௥ܰ௢௨௧௘௥ெ஺௑ , ሻܪ · 2ௌைሻۀ

As a result for SO = 4, the minimum BO is equal to 7,
such that a maximum of 27/24 = 8 SDs can fit in one BI.
The maximum duty cycle of each cluster is then equal to
(1/8) = 12.5 %. Note that to maximize the lifetime of a
WSN, the lowest duty cycles must be chosen. On the other
hand, low duty cycles enlarge end-to-end delays. Hence,
long lifetime is in contrast to the fast timing response of a
WSN, so a trade-off must be found.

According to [6], the minimum CAP is equal to 7.04
ms, assuming the 2.4 GHz ISM band, which corresponds
to 1 time slot with SO = 4. The remaining slots can be
allocated for GTSs. Hence, the maximum CFP length is
equal to LCFP = 15 time slots. A router cannot reserve more
than LCFP time slots for 7 GTSs maximum, i.e. for its ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ end-nodes and ௥ܰ௢௨௧௘௥ெ஺௑ child routers. Assuming
that each end-node requires allocation of a GTS with ௗܰ௔௧௔்ௌ
time slots (i.e. rdata ≤ ௗܰ௔௧௔்ௌ ·RTS) from its parent router, then
each child router can allocate a GTS with the maximum
number of time slots equal to: උ൫ܮ஼ி௉ െ ௗܰ௔௧௔்ௌ · ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൯/ ௥ܰ௢௨௧௘௥ெ஺௑ ඏ

According to Eq. (16), the arrival rate rdata must not
exceed the maximum bandwidth that a parent router can
reserve. Obviously, due to the cumulative flow effect, the
maximum bandwidth will be required by the sink router.

Hence, the corresponding link bandwidth guaranteed by
the parent router at depth ܪ௦௜௡௞ െ 1 to the sink router at
depth ܪ௦௜௡௞ is equal to: ܴሺுೞ೔೙ೖିଵሻ = ቞ܮ஼ி௉ െ ௗܰ௔௧௔்ௌ · ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑

௥ܰ௢௨௧௘௥ெ஺௑ ቟ · ்ܴௌ (22)

As a result applying Eq. (16), we obtain the maximum
arrival rate of the sensory data flow as:

ௗ௔௧௔ெ஺௑ݎ =
ۈۉ
ۇۈ ቞ܮ஼ி௉ െ ௗܰ௔௧௔்ௌ · ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑

௥ܰ௢௨௧௘௥ெ஺௑ ቟ ·்ܴௌቀ∑ ሺ ௥ܰ௢௨௧௘௥ெ஺௑ ሻுି௝ሺுೞ೔೙ೖିଵሻ௝ୀ଴ ቁ · ൫ ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ ൅ ܵ௜௝൯ۋی
(23) ۊۋ

Note that the aforementioned expressions are valid for
,௦௜௡௞ܪ∀ 1 ൑ ௦௜௡௞ܪ ൑ ௦௜௡௞ܪ The expressions for .ܪ = 0 have
been already derived in [5]. The value of burst tolerance
bdata is selected according to the burstiness of sensory data.

7. Experimental evaluation
In this section, we compare the worst-case theoretical

results based on Network Calculus with the experimental
results obtained through a test-bed based on IEEE
802.15.4/ZigBee technologies. The analytical results are
computed using a MATLAB model [19], and the
experimental results are obtained using a real test-bed
based on the TelosB motes [20].

7.1 Experimental setup
The experimental test-bed (illustrated in Figure 6)

consists of 14 TelosB motes running the TinyOS 1.x [21]
operating system with our open source implementation of
the IEEE 802.15.4/ZigBee protocol stack [22]. For
debugging purposes, we have used the Chipcon CC2420
packet sniffer [23] that provides a raw list of the
transmitted packets, and the Daintree Sensor Network
Analyzer (SNA) [24] that provides additional
functionalities, such as the graphical topology of the
network.

We configured the application running on the sensor
nodes to generate 3 bytes at the data payload. Hence, the
maximum size of the MAC frame is equal to
MPDUmax = 192 bits (for details see [17]).

Figure 6. The test-bed deployment for Hsink =1.

TinyOS 1.x flushes the reception buffer of the radio
transceiver after processing the first arriving frame. Thus,
the frames that arrive during the processing time of the
first frame are discarded. This problem has been already
reported and fixed in TinyOS 2.x. Since our
implementation of IEEE 802.15.4/ZigBee protocol stack
was built over TinyOS 1.x, we overcame the
aforementioned problem by setting the inter-frame spacing
(IFS) time (i.e. time between two consecutive frames)
such that no frame arrives during the frame processing
times. The experimental value of IFS equal to 3.07 ms was
measured.

According to Eq. (20), the bandwidth guaranteed by
one time slot for SO = 4 is equal to 3.125 kbps with 100%
duty cycle. Hence, in our experimental scenario with a
12.5 % duty cycle (i.e. BO = BOmin = 7), the guaranteed
bandwidth of one time slot is equal to
RTS = 3.125 · 0.125 = 0.3906 kbps.

Let us assume ௗܰ௔௧௔்ௌ = 1. Then according to Eq. (23),
we obtain the maximum arrival rates of the sensory data
flow as follows:

௦௜௡௞ܪ ௗ௔௧௔ெ஺௑ = 456 bps forݎ - = 2
௦௜௡௞ܪ ௗ௔௧௔ெ஺௑ = 684 bps forݎ - = 1
௦௜௡௞ܪ ௗ௔௧௔ெ஺௑ = 911 bps forݎ - = 0 (root)

As a result of ݎௗ௔௧௔ ൑ min ሺݎௗ௔௧௔ெ஺௑ሻ and ݎௗ௔௧௔ ൑ RTS, we
consider an average arrival rate equal to rdata = 390 bps,
which corresponds to 4 frames (192 bits each) generated
during one Beacon Interval (BI = 1.96608 sec). We
assume that the burst tolerance is equal to bdata = 576 bits,
which corresponds to 3 frames generated at once. Hence,
each sensory data flow is bounded by arrival curve ߙௗ௔௧௔ሺݐሻ = 576 ൅ 390 · The frames can be generated as .ݐ
constant bitrate (CBR) or variable bitrate (VBR) traffic
upper bounded by the arrival curve ߙௗ௔௧௔ሺݐሻ (Figure 7).

Finally, let us summarize the complete network setting:
- ௥ܰ௢௨௧௘௥ெ஺௑ = 2
- ௘ܰ௡ௗ_௡௢ௗ௘ெ஺௑ = 1
ܪ - = 2
- SO = 4 (SD = 245.76 ms)
- BO = 7 (BI = 1966.08 ms)
- Duty Cycle = 12.5 %

- MPDUmax = 192 bits
- rdata = 390 bits
- bdata = 576 bits
- IFS = 3.07 ms
- LCFP = 15
- S = 0

We assume the worst-case TDCS of a flow along the
longest routing path from router R24 to the sink (Figure 1)
given by the following sequence of superframe durations:
SD11, SD01, SD12, SD24, SD23, SD21, SD22. Note that we
consider only unacknowledged transmissions.

Figure 7. The sensory traffic generation.

7.2 Experimental vs. theoretical results
Buffer requirements

Figure 8 shows the theoretical worst-case buffer
requirements as compared to the maximum values
obtained through real experimentation, for ܪ௦௜௡௞ = 2.

Figure 8. Buffer requirements.

First, the theoretical buffer requirements are divided
into three parcels according to their origin, as already
shown in Section 4.2. Observe that the cumulative effect
of the burst is more important than the cumulative effect
of the service latencies. The effect of the service latencies
may be more important for other setting of bdata and rdata.
So, the different settings of the sensory arrival curve affect
the buffer requirements. The minor effect of the upstream
service latency at depth 0 is given by the priority rules
(Section 3.3), such that the data arriving during the
transmit GTS (i.e. upstream flow) are stored in the root
until the receive GTS (i.e. downstream flow), at the end of
the same SD, is active and data is dispatched (Figure 5).

The next observation confirms that the theoretical
values upper bound the experimental values. The
pessimism of the theoretical bounds is justified by the fact
that the Network Calculus analytical model is based on a
continuous approach (arrival and service curves are

da
ta

 [b
its

]

continuous) in contrast to the real stepwise behaviour of
flows and services in the test-bed. In practice, the data is
actually transmitted only during its GTS, while in the
analytical model we consider a continuous data flow
during the whole BI, since it represents the average rate
and not the instantaneous rate. Figure 9 illustrates the
problem and shows the arrival and service curves of a data
flow sent by an end-node to its parent router. The burst of
the outgoing data flow ܾௗ௔௧௔כ (Eq. (5)) is equal to ܳ௠௔௫்ு , in
case of the analytical model, or ܳ௠௔௫ா௑௉ , in the experimental
case. Due to the cumulative flow effect, the discrepancy
between theoretical (ܳ௠௔௫்ு) and experimental (ܳ௠௔௫ா௑௉) values
of buffer requirement increases with depth. The
rate-latency service curve used in our analysis results from
a trade-off between computing complexity and pessimism.

Figure 9. Theoretical vs. experimental data traffic.

The numerical values of theoretical worst-case as well
as experimental maximum buffer requirements are
summarized in Table 1. The bandwidth requirements
given by Eq. (16) and the corresponding number of time
slots are also presented. In Tables 1 and 2, U means
upstream router at depth i or upstream link to a router at
depth i, and D means downstream router or downstream
link from a router at depth i.

Table 1
Buffer Requirements: Theoretical vs. Experimental Results

 depth
theoretical results

(worst-case values)
experimental results
(maximum values)

Ri [kbps] ௜்ܰ ௌ Qi [kbits] Qi [kbits] ܪ௦௜௡௞ = 0
(root)

0 U 1.7 3 15.995 5.376
1 U 0.39 1 7.329 2.304
2 U — — 2.008 0.768

௦௜௡௞ܪ = 1

0 D 1.56 4 8.667 3.072
U 1.17 3 — —

1 D — — 14.02 5.376
U 0.39 1 7.257 2.304

2 U — — 2.008 0.768

௦௜௡௞ܪ = 2

0 D 1.56 4 8.667 3.072
U 1.17 3 — —

1 D 2.34 6 15.966 4.608
U 0.39 1 7.257 2.304

2 D — — 17.3 5.376
U — — 2.008 0.768

end-node 0.39 1 1.337 1.344

Observe in Table 1 that end-nodes have the smallest
buffer requirement as they are the leaves of the tree, and
that the buffer requirement grows in direction of the sink
router. Since the sink can be associate with any router and
in order to avoid buffer overflow, all routers at depth i
should allocate a buffer of capacity greater or equal to the
worst-case buffer requirement at given depth i (e.g. all
router at depth 0 allocate a buffer of capacity equal to
15.995 kbits), which effectively demonstrates how these
analytical results can be used by a system designer.
Delay bounds

In Figure 10, we compare the worst-case, maximum
and average values of per-hop delay bounds in each router,
and the end-to-end delay bounds for ܪ௦௜௡௞ = 2. A first
observation confirms that theoretical values upper bound
the experimental values. The difference between
theoretical worst-case (ܦ௠௔௫்ு) and experimental maximum
 delays (Figure 9) is due to the aforementioned (௠௔௫ா௑௉ܦ)
continuous and stepwise behaviours of the analytical
model and test-bed, respectively. The experimental delays
comprise mainly the service latencies (Figure 9)
decreasing in the direction of the sink (Figure 5). Hence,
the maximum per-hop delays also decrease in the direction
of the sink, as can be observed in Figure 10. The low
downstream delay at depth 0 results from the priority rule
(Section 3.3). The end-to-end delays bounds are quite
high, even though the bdata and rdata are low. This is mainly
due to high value of SO = 4 (i.e. BI = 1.966 sec). Hence,
the end-to-end delay bounds can be reduced using lower
values of SO or higher bandwidth guarantees, using lower
IFS, for example.

Figure 10. Delay bounds.

Observe also that the worst-case end-to-end delay
obtained by the per-flow approach offers less pessimism
than the delay from the per-hop approach.

Table 2 presents the worst-case, maximum and average
numerical values of per-hop and per-flow delay bounds,
and the end-to-end delays for given sink positions. Note
that the average values were computed from the set of 15

SD24 BI

Dmax

arrival curve

αdata(t)
 = b+rt

service curve

β data
(t)

= R(t+
T)

 output bound

αdata(t)
 = (b+rT)+rt

time [sec]

TH

EXPDmax

*

GTS

real (experimental) curves
theoretical curves

SD12

b

r

b+rT

R

+

measurements, involving 1155 frames each. The
theoretical worst-case end-to-end delays are obtained as
the sum of per-hop delays using Eq. (19) (first term), or by
per-flow approach (Section 5.2), which results in the
family of service curves as a function of θ ≥ 0. In our
analysis we assume ߠ = ܶ ൅ ሺܾଶ ܴ⁄ ሻ as a trade-off between
computation complexity and optimality. The
determination of the optimal service curve, leading to the
lowest worst-case delay, will be addressed in future work.

Table 2
Delay Bounds: Theoretical vs. Experimental Results

 depth
theoretical results

(worst-case values)
experimental results

maximum average
Di [sec] Di [sec] Di [sec] ܪ௦௜௡௞ = 0

(root)

1 U 6.257 1.764 1.308
2 U 5.143 1.812 1.602
De2e 14.82/9.69 7.154 4.952 ܪ௦௜௡௞ = 1

0 D 5.547 0.104 0.099
1 U 6.195 1.76 1.728
2 U 5.143 1.809 1.602
De2e 20.31/10.53 7.251 5.471

௦௜௡௞ܪ = 2

0 D 5.547 0.104 0.099

1 D 6.814 1.812 1.321
U 6.195 1.766 1.728

2 U 5.143 1.814 1.135
De2e 27.13/13.65 9.074 6.325

end-node (Ddata) 3.425 3.578 2.042

8. Conclusions and future work
In this paper, we tackled the worst-case dimensioning

of cluster-tree wireless sensor networks (WSN) assuming
that the data sink can be mobile, i.e. can be associated to
any router in the sensor network. We provided a system
model, an analytical methodology and a software tool that
enables system designers to dimension and analyze these
networks assuming an error-free channel. In this way, it is
possible to guarantee the routers’ buffer size to avoid
buffer overflows and to minimize each cluster’s duty cycle
(maximizing nodes’ lifetime) still satisfying that
messages’ deadlines are met.

Importantly, we showed how it is possible to instantiate
our generic methodology in IEEE 802.15.4/ZigBee, which
are promising technologies for WSN applications. We also
developed a 7 clusters test-bed based on
Commercial-Off-The-Shelf technologies, namely TelosB
motes [20] running our open-ZB protocol stack [22] over
TinyOS [21]. This test-bed enabled us to assess the
pessimism of our worst-case theoretical results (buffer
requirements and message end-to-end delays), by
comparing these to the maximum and average values
measured in the experiments.

Ongoing and future works include improving the
current methodology to encompass clusters operating at
different duty-cycles and to provide a model that enables
real-time control actions, i.e. the sink assuming the role of
controlling sensor/actuator nodes.

References

[1] Z. Hu and B. Li, “Fundamental Performance Limits of Wireless
Sensor Networks,” Ad Hoc and Sensor Networks, Nova Science
Publishers, pp. 81-101, ISBN 1-59454-396-8, Hardcover, 2005.

[2] T. F. Abdelzaher, S. Prabh, R. Kiran, “On real-time capacity limits
of multihop wireless sensor network,” In IEEE Real-Time Systems
Symposium (RTSS’04), Portugal, Dec. 2004.

[3] J. Gibson, G. G. Xie, Y. Xiao, “Performance Limits of Fair-Access
in Sensor Networks with Linear and Selected Grid Topologies, “ In
GLOBECOM Ad Hoc and Sensor Networking Symposium,
Washington DC, Nov. 2007

[4] S. Prabh, T. F. Abdelzaher, “On Scheduling and Real-Time
Capacity of Hexagonal Wireless Sensor Networks, “In Euromicro
Conference on Real-Time Systems (ECRTS’07), Italy, July 2007.

[5] A. Koubaa, M. Alves, E. Tovar, “Modeling and Worst-Case
Dimensioning of Cluster-Tree Wireless Sensor Networks,” In Real
Time Systems Symposium (RTSS’06), Brazil, Dec. 2006.

[6] IEEE 802.15.4 Standard-2003, “Part 15.4: Wireless Medium
Access Control and Physical Layer Specifications for Low Rate
Wireless Personal Area Networks,” IEEE SA Standards Board.

[7] Zigbee Alliance, “ZigBee Specification,” v. 1.0, April 2005.
[8] A. Koubaa, M. Alves, E. Tovar, “IEEE 802.15.4: a Federating

Communication Protocol for Time-Sensitive Wireless Sensor
Networks,“ Chapter of the book Sensor Networks and
Configurations: Fundamentals, Techniques, Platforms, and
Experiments, Springer-Verlag, Germany, pp. 19-49, Jan. 2007.

[9] J-Y. Le Boudec and P. Thiran, “A Theory of Deterministic Queuing
Systems for the Internet,” In Lecture Notes in Computer Science
(LNCS), Vol. 2050, May 2004.

[10] J. B. Schmitt and U. Roedig, “Sensor Network Calculus - A
Framework for Worst Case Analysis,” In IEEE/ACM Conference
on Distributed Computing in Sensor Systems (DCOSS’05), USA,
June 2005.

[11] J. B. Schmitt, F. Zdarsky, L. Thiele, “A Comprehensive Worst-
Case Calculus for Wireless Sensor Networks with In-Network
Processing,” In IEEE Real-Time Systems Symposium (RTSS’07),
USA, Dec. 2007.

[12] J. B. Schmitt and U. Roedig, “Worst Case Dimensioning of
Wireless Sensor Networks under Uncertain Topologies,“ In
Workshop on Resource Allocation in Wireless NETworks
(RAWNET’05), Italy, April 2005.

[13] S. R. Gandham, M. Dawande et al. “Energy efficient schemes for
wireless sensor networks with multiple mobile base stations,” In
IEEE GLOBECOM, USA, Dec. 2003.

[14] W. Y. Poe and J. B. Schmitt, “Minimizing the Maximum Delay in
Wireless Sensor Networks by Intelligent Sink Placement,”
Technical Report 362/07, U. Kaiserslautern, Germany, July 2007.

[15] R. Diestel, “Graph Theory”, Springer-Verlag, ISBN 0-387-95014-1,
Hardcover, 2000.

[16] A. Koubaa, M. Alves, E. Tovar, “Modeling and Worst-Case
Dimensioning of Cluster-Tree Wireless Sensor Networks: proofs
and computation details,” IPP-HURRAY!, TR-060601, June 2006.

[17] P. Jurcik, R. Severino, A. Koubaa, M. Alves, E. Tovar, “Worst-case
Dimensioning of Cluster-Tree Sensor Networks with Mobile Sink
Behaviour,” Technical Report IPP-HURRAY!,TR-080401,
available online http://www.hurray.isep.ipp.pt:8080, May 2008.

[18] A. Koubaa, A. Cunha, M. Alves, “A Time Division Beacon
Scheduling Mechanism for IEEE 802.15.4/ZigBee Cluster-Tree
Wireless Sensor Networks,” In Euromicro Conference on Real-
Time Systems (ECRTS’07), Italy, July 2007.

[19] MATLAB tool, http://www.open-zb.net/downloads.php, 2008.
[20] TelosB Datasheet, Crossbow Inc., http://www.xbow.com.
[21] TinyOS Community Forum, http://www.tinyos.net.
[22] A. Cunha, A. Koubaa, R. Severino, and M. Alves, “Open-ZB: an

open-source implementation of the IEEE 802.15.4/ZigBee protocol
stack on TinyOS,” In IEEE Conference on Mobile Ad-hoc and
Sensor Systems (MASS’07), Italy, Oct. 2007.

[23] CC2420DK Development Kit, http://www.ti.com.
[24] Daintree Sensor Network Analyzer (SNA), http://www.daintree.net.
[25] A. Cunha, R. Severino, N. Pereira, A. Kouba, M. Alves, “ZigBee

over TinyOS: implementation and experimental challenges, “ In the
8th Portuguese Conference on Automatic Control (CONTROLO
2008), Vila Real, Portugal, 2008.

