

Cooperating Objects NETwork of Excellence

7th Framework Programme

FP7-224053

Quality of Service in Wireless Sensor Networks: towards the eQualiSer...

SensorNets School, Monastir, Tunisia, 20DEC2009 Mário Alves, mjf@isep.ipp.pt

OONET as a settiment 0000

Where do I come from...

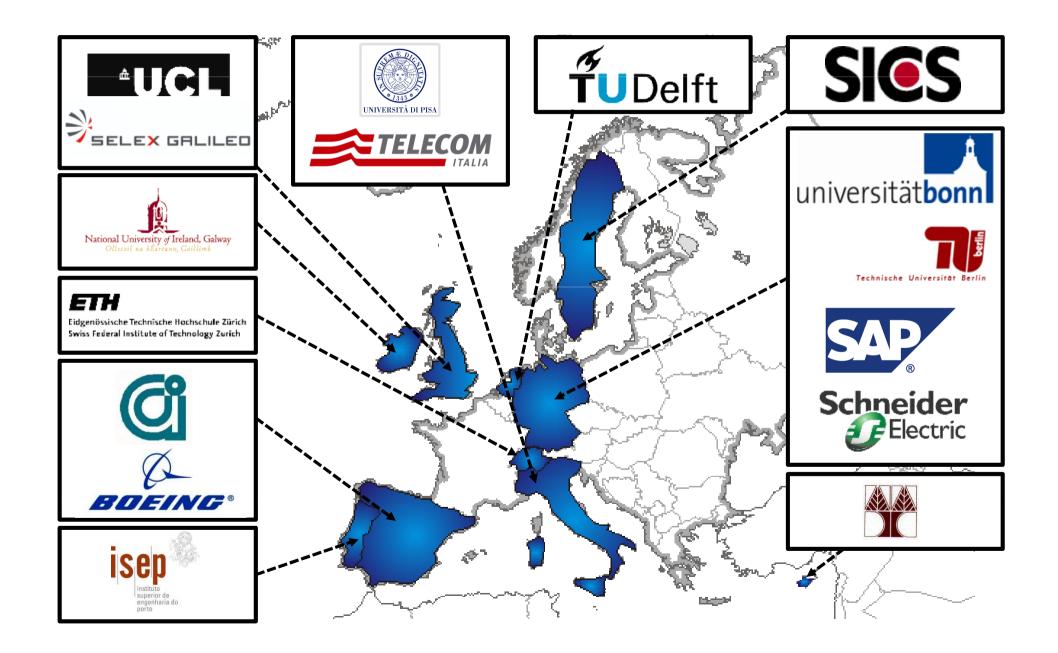
knew about these?

About my research unit – CISTER

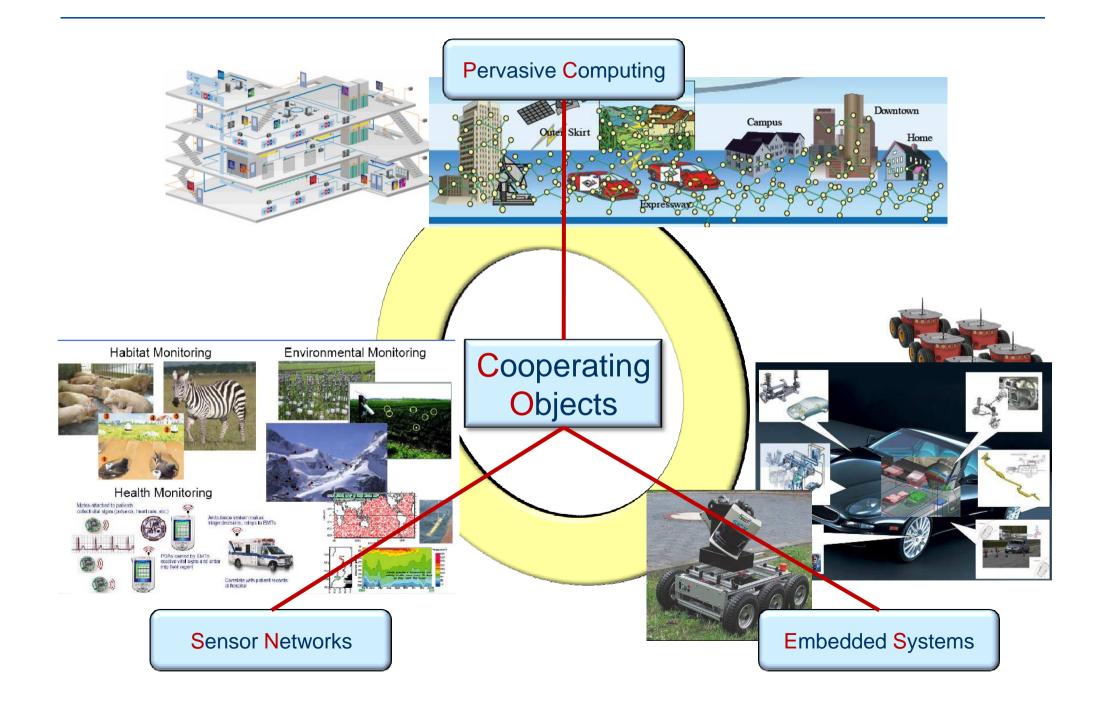
http://www.cictoricon inp.pt

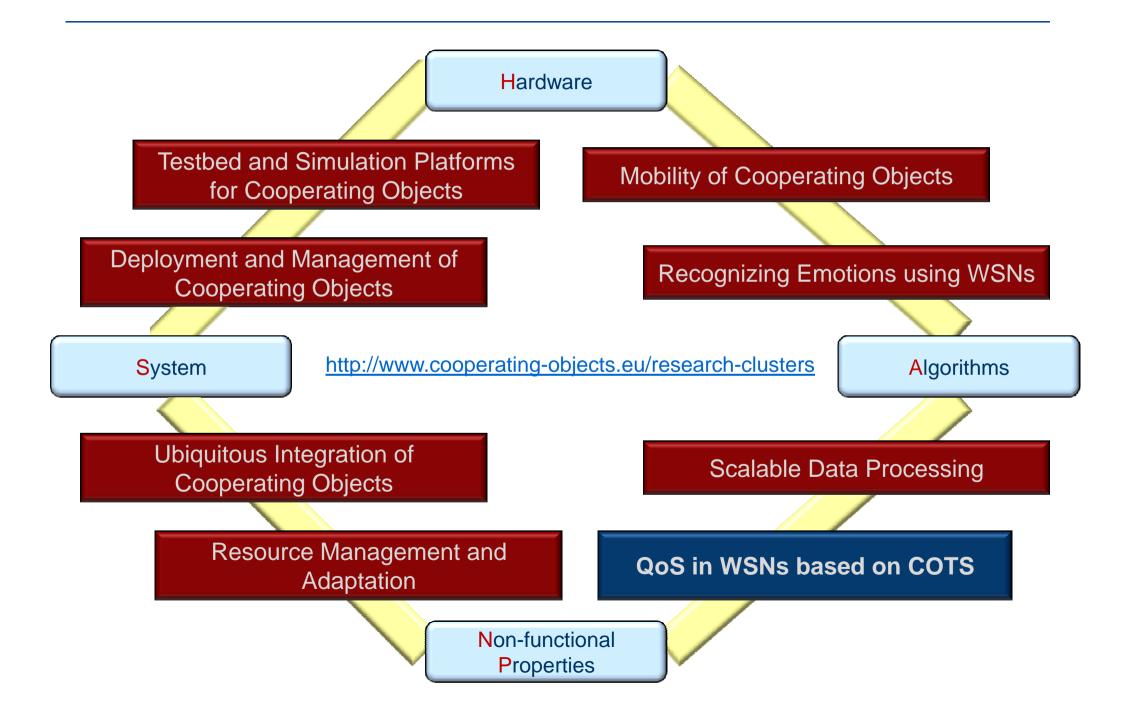
About my research unit – CISTER

- Main scientific area
 - Real-time and embedded computing systems
- Research areas:
 - <u>Wireless Sensor Networks</u>
 - http://www.cister.isep.ipp.pt/research/sensor+networks
 - Cyber-Physical Systems
 - http://www.cister.isep.ipp.pt/research/cyber-physical+systems
 - Multicore/multiprocessor Systems
 - http://www.cister.isep.ipp.pt/research/multicore+systems
 - Adaptive Real-Time Systems
 - http://www.cister.isep.ipp.pt/research/adaptive+rt+systems
 - Real-Time Software
 - http://www.cister.isep.ipp.pt/research/rt+software


About CONET – Cooperating Objects NoE

- Network of Excellence funded in FP7 (INFSO-ICT-224053)
 - 1/JUN/2008 31/MAY/2012 (48 months)
 - EC funding: 4 MEuro | Total Budget: 10.4 Meuro
 - 16 core partners: key academic and industrial players
 - strong Industrial and External Advisory Boards
 - more information: <u>http://www.cooperating-objects.eu</u>
- Definition of "Cooperating Objects"
 - Cooperating Objects consist of embedded computing devices equipped with communication as well as sensing or actuation capabilities that are able to cooperate and organize themselves autonomously into networks to achieve a common task.




About CONET – core partners

About CONET – areas

About CONET – research clusters

CISTER – related projects

- EMMON (ARTEMIS programme) <u>http://www.artemis-emmon.eu/</u>
 - large-scale embedded monitoring using WSNs
 - MAR/2009 FEB/2012
 - 8 partners: Critical Software (PT), Intesys (UK), Trinity College Dublin (IR)...
 - target WSN application with 10000 nodes
- ARTISTDesign (EC NoE) <u>http://www.artist-embedded.org</u>
 - embedded systems design
 - JAN/2008 JAN/2012 (4 years)
 - 30 partners: OFFIS (D), a PAREDES (I), Centre de Énergie Atomique (F),
 U. Uppsala (S), U. York (UK), U. Lund (S), U. Bolonha (I), U. Lausanne (CH), ...
 - coordinated by Prof. Joseph Sifakis, 2007 ACM Turing Award
- PT-CMU (Carnegie Mellon University) <u>http://www.cmuportugal.org</u>
 - WSN for monitoring critical physical infrastructures
 - JAN/2007 FEB/2012 (5 years)
- TinyOS Alliance <u>http://www.tinyos.net</u>
 - leading IEEE 802.15.4/ZigBee protocol stack <u>http://www.open-ZB.net</u>
 - since 2006 (in Net2 WG), since 2009 (in 15.4 and ZigBee WGs)
 - <u>http://tinyos.stanford.edu:8000/15.4_WG</u> <u>http://www.cister.isep.ipp.pt/activities/ZigBee_WG/</u>

CMU Portugal Information and Communication Technologies Institute

9

References

- "Cooperating Objects Roadmap", 2009, this talk is in synergy with several sections (e.g. 3.3, 6.1.3 and 6.2.3)
- M. Alves et. al, "Quality-of-Service in Wireless Sensor Networks: state-of-the-art and future directions", HURRAY-TR-091108, available at http://www.cister.isep.ipp.pt/docs

About the title of the talk (1)

Quality of Service in Wireless Sensor Networks: towards the eQualiSer...

About the title of the talk (2)

- What are "wireless sensor/actuator networks"?
 - a wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different locations.
 - originally motivated by military applications such as battlefield surveillance; now used in many civilian application areas, including environment and habitat monitoring, healthcare applications, home automation, and traffic control

About the title of the talk (3)

- What is "Quality-of-Service (QoS)"?
 - traditionally, "QoS is the ability to provide different priority to different applications, users, or data flows, or to guarantee a certain level of performance to a data flow...."
 - "...for example, a required bit rate, delay, jitter, packet dropping probability and/or bit error rate may be guaranteed…"
 - "...QoS guarantees are important if the network capacity is a limited resource..."
 - "...e.g. voice over IP, online games and IP-TV..."
 - but we can argue against this concept/definition

so we will look at QoS in a different perspective...

Outline

A holistic perspective on QoS

an integrated perspective over different QoS properties

SOTA, gaps and trends

state-of-the-art and roadmap for each QoS property

Multilateral impacts

how each property influences the other properties

Relevance and Timeline

 according to CONET survey – relevance of each property and when are mature solutions expected

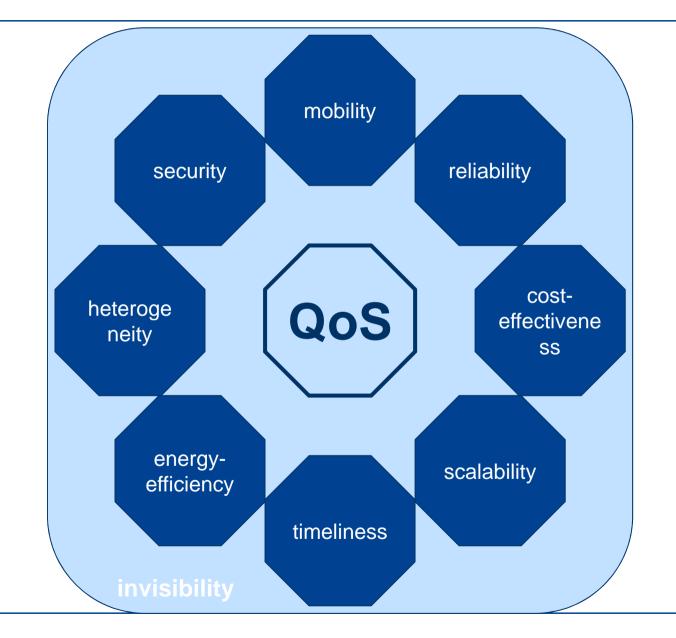
Final highlights

A holistic perspective on QoS

- Recalling Slide #12 (Wikipedia definition of QoS):
 - "QoS is the ability to provide different priority to different applications, users, or data flows, or to guarantee a certain level of performance to a data flow...."
- QoS is thus traditionally associated to:
 - bit rate, network throughput, delay, bit/packet error rate
 - which reflect the "performance" properties (timing & error rate)

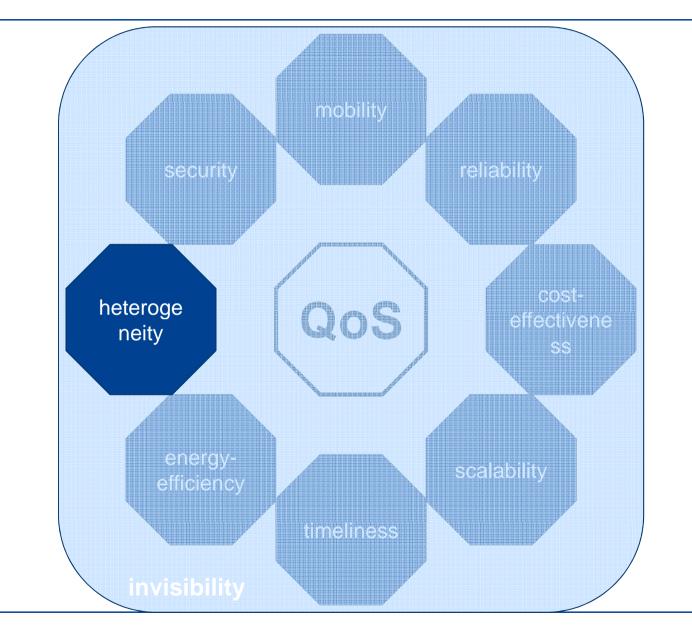
In this talk, I advocate that

 these properties <u>alone</u> DO NOT reflect the overall quality of the service provided to the user/application



A holistic perspective on QoS

- We consider that this concept of QoS is too strict
 - especially when considering <u>the complexity and scale</u> of emerging computing systems
 - e.g. Cooperating Objects and Cyber-Physical Systems
- Computing systems and particularly WSN applications should be designed taking into consideration other NFP properties
 - Non-Functional Properties are defined as the properties of a system that do not affect their functionality, but their behavior/performance
 - e.g. energy-sustainability, dependability (reliability, robustness, availability, maintainability, security, safety,...), timeliness (throughput, delay, traffic differentiation), scalability, mobility, heterogeneity, cost-effectiveness
- thus, we extend the QoS concept to a <u>holistic</u> perspective
 - encompassing several NFPs, as ellaborated next...



A holistic perspective on QoS

PRIMERS

Heterogeneity emerges from:

- o ≠ networking hardware & software
 - ✓ sensor/actuator-level communication protocols (wired/wireless)
 - ≠ higher-level nodes (e.g. gateways, data processing sinks)
 - # higher-level communication protocols

 - ≠ embedded system nodes hardware/software architectures
 - ✓ sensors and sensor boards, design diversity, calibration
 - ≠ operating systems (for resource-constrained net. embedded systems)
 - For the programming languages & simulation/modelling tools ("idem")
 - # # middleware (e.g. security and fault-tolerance mechanisms)

- ≠ cyber/pervasive/host computing devices
 - HMIs (in general), wearable computing (e.g. mobile phones, PDAs, handheld terminals, HMDs, RFID readers)
 industrial computers (e.g. PLCs, NCs, RCs) and machinery, mobile robots, transportation vehicles, database servers

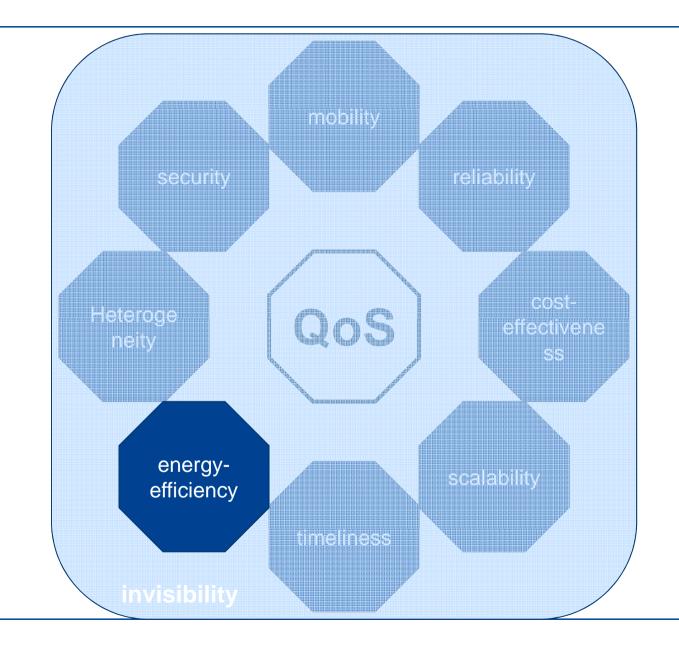
- ≠ applications/services/users in the same system
 - same network infrastructure may support several applications/services
 - potentially several/many human users, eventually playing at ≠ levels and with ≠ cultures, ≠ technical skills,...

Research challenges

- new classes of resource-constrained embedded system nodes must be identified
 - Eliminating/reducing (or not?) the existing fuzzy frontiers between nodes with ≠ characteristics and ≠ capabilities
 - MEMS, active/passive RFID, "general-purpose" motes (e.g. Mica, Telos, Firefly), powerful motes (e.g. iMote, SunSPOT, Stargate)
 - trend for miniaturization will turn this task harder (or easier?)...

- Research challenges (cont.)
 - interoperability btw sensor/actuator-level comm. protocols
 - experience: there will be no "single" standard protocol for WSNs
 - ≠ wireless protocols will have to coexist
 - e.g. IEEE 802.15.4, IEEE 802.15.6, ZigBee, 6loWPAN, IEEE 802.15.1 & Bluetooth Low Power, ISA100 or WirelessHART
 - WSN protocols will have to coexist wih wired protocols
 - such as for domotics (e.g. KNX, LonWorks), process control (ASi, DeviceNet, HART), industrial automation (PROFIBUS, FF) and automotive (e.g. FlexRay, CAN, LIN, MOST) systems

- Research challenges (cont.)
 - interoperability btw sensor/actuator-level and higher-level protocols
 - wireless: IEEE 802.11/WiFi, IEEE 802.16/WiMAX, IEEE 802.15.3/UWB
 - wired: Switched/Industrial Ethernet, ATM
 - guaranteeing end-to-end QoS is even more complex!
 - dealing with ≠ embedded system nodes hardware/software


≠ sensor technology

- for measuring different physical quantities
- same physical parameter measured by n sensor nodes
 - = type: redundancy, accuracy, functional (e.g. MAX) needs
 - ≠ types: "design diversity" needs
- *≠* operating systems (e.g. TinyOS, Contiki)
 - □ ≠ programming languages (e.g. nesC, C, JAVA)
 - ≠ simulation/programming environments/tools

- Research challenges (cont.)
 - - same network infrastructure may support several applications/services
 - # applications/services will impose # QoS requirements
 - will dynamically change depending on spatiotemporal issues
 - system designers must adequately devise mechanisms such as MAC/routing, admission control and scheduling, security, faulttolerance, data aggregation/processing
 - to encompass such applications/services coexistence
 - several/many human users, playing at ≠ levels and with ≠ cultures, ≠ technical skills,...
 - further research on Human-Computer Interaction, HMIs, ergonomics, psychology and semantics is required

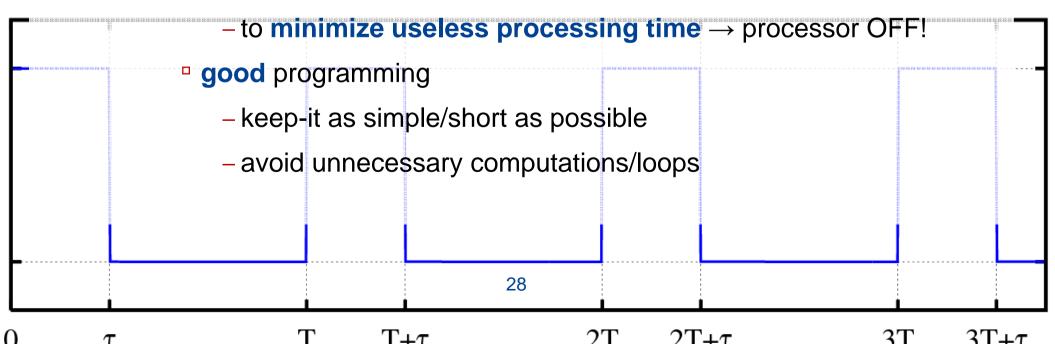
Energy concerns must always be present

- WSNs = embedded devices at large-scale
 - most will be communicating through air (wirelessly)
 - some will be mobile
 - additional energy cables are a real burden of even impossible
- therefore
 - most of the devices must be self-sustainable (energetically)
- but this does <u>not</u> mean that all devices need to be autonomous in terms of energy
 - some devices can (must) be powered by the electrical grid
 - due to special duties (e.g. routers/gateways, data processing)
 - some devices can (must) be powered by special energy sources (micro-generators or high capacity batteries/fuel cells/supercapacitors)
 - due to innaccessible location, mobility features, etc.

Research challenges

hardware design

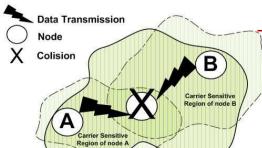
reduce hardware's energy consumption
microprocessors, microcontrollers, DSPs
memories, ADC/DAC
reduce energy losses
mechanical (e.g. friction), electrical (Joule's), magnetic (Foucault's)
trend for MEMS (when appropriate)
favouring active sensors (vs. passive)
active sensors produce their own energy
thermocouple, piezoelectric, photocell


- Research challenges (cont.)
 - resources utilization 0

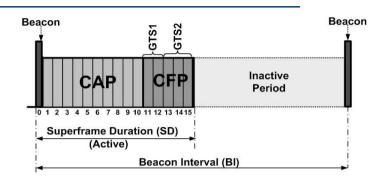
0

- sleep as much as possible
 - Iow duty-cycle computations and communications
- efficient computations
 - try to reach 100% CPU(s) utilization

 $T_{\pm \tau}$


- optimal scheduling algorithms; reduce task switching

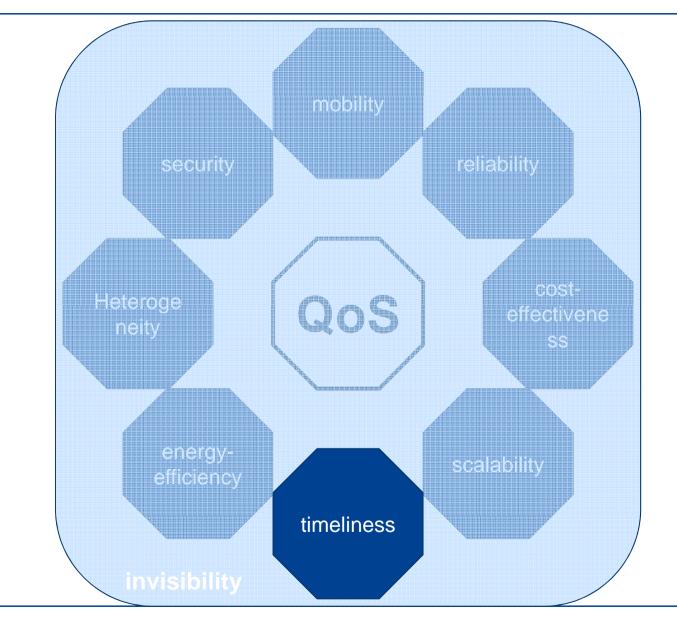
 $2T + \tau$


 $T_{+\tau}$

- Research challenges (cont.)
 - resources utilization (cont.)
 - efficient communications
 - minimize communication time → tranceiver OFF!
 - data aggregation & distributed data processing (if possible)
 - efficient MAC/routing scheduling schemes
 - do not waste bandwidth (specially in TDM-like MACs)
 - operate at **low duty cycles** (requires synchronization)
 - energy-aware PhL/MAC/routing protocols
 - use **optimal TX/RX power level** (\rightarrow location-awareness)
 - avoid idle listenning & hidden/exposed terminal problems
 - use **optimal routes**, the shorter the better (not always)



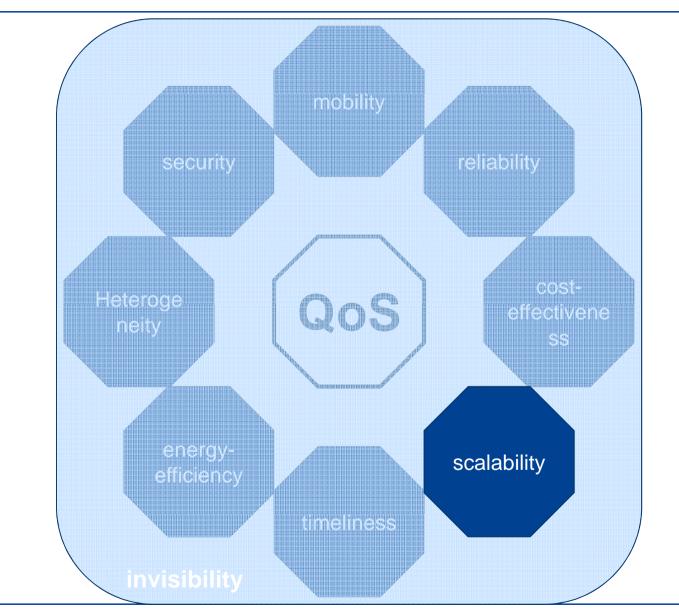
avoid **collisions** (group nodes in CSMA, contention-free MACs)



- Research challenges (cont.)
 - resources utilization (cont.)
 - efficient communications (cont.)
 - reduce overheads
 - < memory footprint, < proc. delays</pre>
 - lighter protocol stacks
 - OSI layer headers/overheads
 - network management messages
 - cross-layer design
 - energy harvesting/scavenging
 - grab energy from environment
 - (e.g. thermal, vibration, light, humidity, wind, waves, EMI)

- Timeliness = timing behaviour of a system
 - is reflected in properties such as
 - network throughput
 - effective bit rate
 - message delays
 - how long does it take for a message to be transmitted from a source to be received by the destination
 - traffic differentiation
 - assign traffic classes/priorities, e.g. real-time/best effort traffic
 - these must be balanced with other QoS properties
 - e.g. to increase throughput it might be necessary to increase the "hardware" bit rate or nodes duty cycle
 - leading to more energy consumption

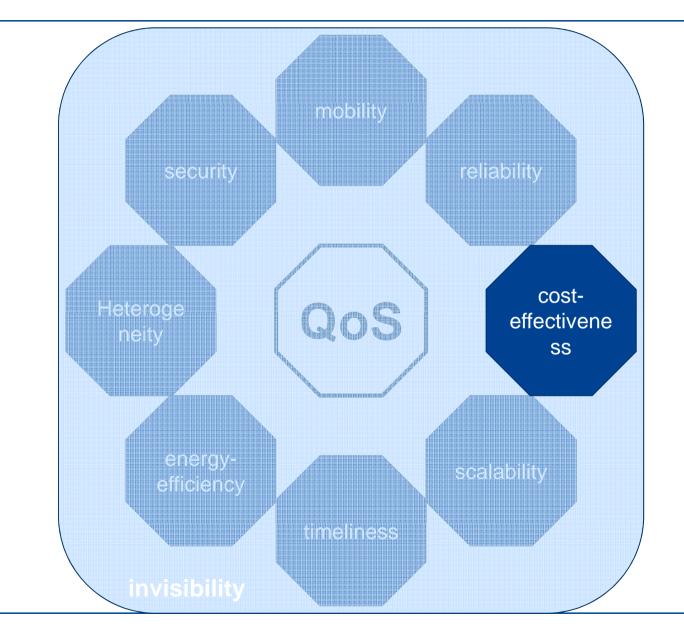
Timeliness is of increasing importance


- in a **cyber-physical world**, computing entities closely interact with their physical environment, thus their **timing behaviour is of paramount importance**
- In some applications, some tasks are imposed to finish within a certain **deadline** dubbed as "**real-time applications**"
 - need RT computation
 - requiring RT operating systems and programming languages
 need RT communication
 - requiring RT communication protocols
 - usually require over-allocation of resources
 - resulting of the inherent pessimism of the analysis (e.g. WCET)
 a problem for dynamic and energy-efficient systems

- Network resources must be predicted in advance (pre-run-time)
 - to support the applications with a predefined timeliness
 - to guarantee that the system will behave as expected
- Network dimensioning methodologies/tools, for computing
 - performance limits (throughput)
 - worst-case message delays (end-to-end or per-hop)
 - worst-case routers' buffers size
- Real-time communications require
 - **deterministic** MAC and routing protocols
 - hierarchical network models (hexagonal, grid or cluster-tree)

- Research challenges
 - biggest challenge is to balance all contradictory QoS properties
 - explore hierarchical network architectures (already referred)
 - investigate how aggregate computations can be used to achieve a time complexity that is independent of the number of nodes
 - design algorithms and protocols in a cross-layer approach; bad thing is that software gets more difficult to maintain and update
 - consider timeliness <u>both</u> at the network and node levels; nodes hardware design, OS, prog. language and style impact timeliness
 - investigate existing OSs (particularly TinyOS and Contiki) to incorporate real-time features (e.g. preemption, priority-inheritance)
 - find innovative MAC and routing schemes (e.g. to reduce collisions, increase throughput and bandwidth utilization,...)

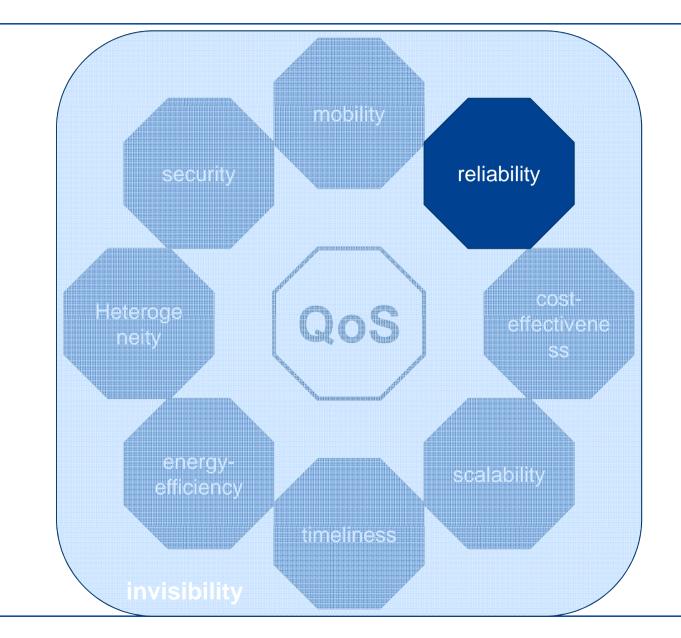
Quality-of-Service – scalability


Ingest with increasing number of datastreams

- Scalability refers to the capability of a system to easily/transparently adapt itself to variations in the
 - number of nodes (fewer or more nodes in the overall system)
 - nodes' spatial density (fewer or more nodes in a restricted region)
 - geographical region under coverage (smaller/wider, 2D/3D)
- So far, largest WSN systems comprise some hundreds of nodes
 - e.g. VigilNet, ExScal
- Computational and sensing power grows linearly with the number of sensor nodes
 - communication capabilities do NOT (they get worse)
 - 1000 nodes reporting 1 ms message = 20 minutes!

- Research challenges
 - efficient scale-aware MAC/routing mechanisms (e.g. WiDOM)
 - efficient data processing, aggregation, storage and querying
 - explore hierarchical (tiered) network architectures
 - support multiple data sinks (need or load balancing)
 - investigate how standard and COTS technologies can be used and interoperate to support scalable systems

Quality-of-Service – cost-effectiveness



Quality-of-Service – cost-effectiveness

- System cost usually includes issues such as
 - system design/development
 - hardware cost
 - deployment and commissioning
 - exploration and maintenance
- Research challenges
 - cost/node target < \$1 threshold (current cost €10-€50)
 - go for mass production (demand-supply snowball)
 - bet on cheaper designs/materials/production processes
 - bet on components reduction/miniaturization (e.g. MEMS)

OONET as a set in the OOOO

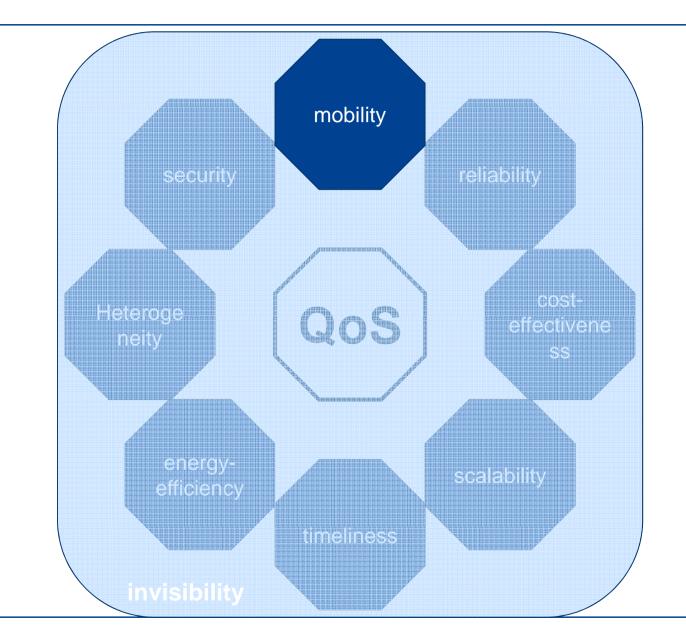
- In WSN applications, operational and environmental conditions may be unfavourable
 - vibration/mechanical impacts
 - extreme (high/low) temperatures
 - extreme (high/low) pressures
 - water, humidity, moisture, dust
 - other RF sources, EMI
 - Data delivery in WSN is inherently faulty and unpredictable (much more than in wired networks or even in other wireless networks)
 - sensor nodes are fragile and have weak resources
 - radio links are error-prone (EMI, obstacles, environment, mobility)
 - network congestion (event data bursts) may lead to packet loss
 - multi-hop nature of WSNs

- WSN equipment must be robust and reliable
 - to overcome all these harsh conditions
 - to reduce or eliminate maintenance actions
 - to have a lifetime of years
- Robustness (hardware/software) refers to
 - a component or a system that performs well not only under ordinary conditions but also under abnormal conditions that stress

Reliability is

- the ability of a component or system to perform its required functions under stated conditions for a specified period of time
 - requires the use of robust hardware/software
 - requires the support for fault-tolerance mechanisms

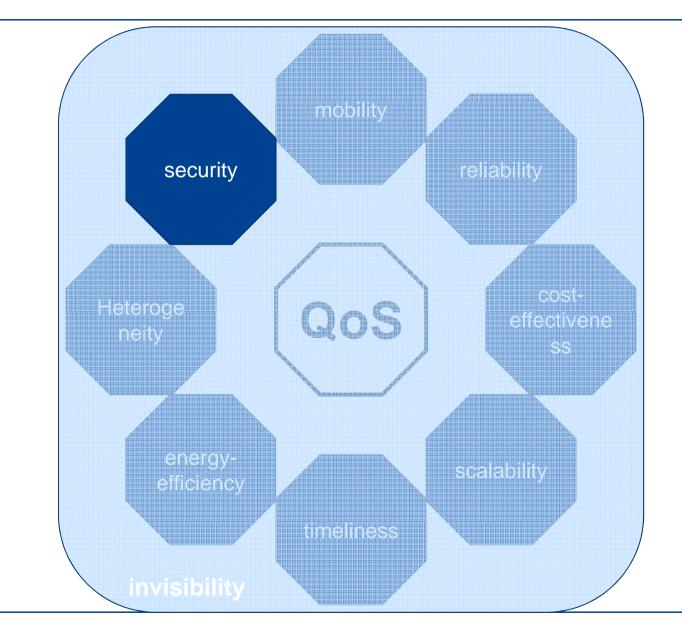
Research challenges


- hardware robustness
 - investigate on robust, cheap, ecological materials/components
 - miniaturization & cost/node should not prejudice hardware robustness
- robust software/algorithms
 - write "generic" code, to accommodate wide range of situations and thereby avoid having to insert extra code just to handle special cases
 - using formal techniques, e.g. fuzz testing, to test algorithms
 - providing each application with its own memory area (avoiding interference with the memory areas of other applications and kernel)
 - explore advanced programming paradigms (e.g. collaborative computing, reflection mechanisms)

- Research challenges (cont.)
 - fault-tolerance
 - generically, investigate F-T mechanisms that are scalable, energy/timeefficient, adaptable to dynamic changes
 - F-T mechanisms must spread along different layers (DLL, NL, AL), in a cross-layer approach (exploring the interactions btw layers)
 - find more robust TL solutions that can recover from node/link failures and network congestion
 - measurement accuracy
 - related to accuracy of sensor/signal conditioning, ADC,...
 - note sensor density vs. data fusion/aggregation

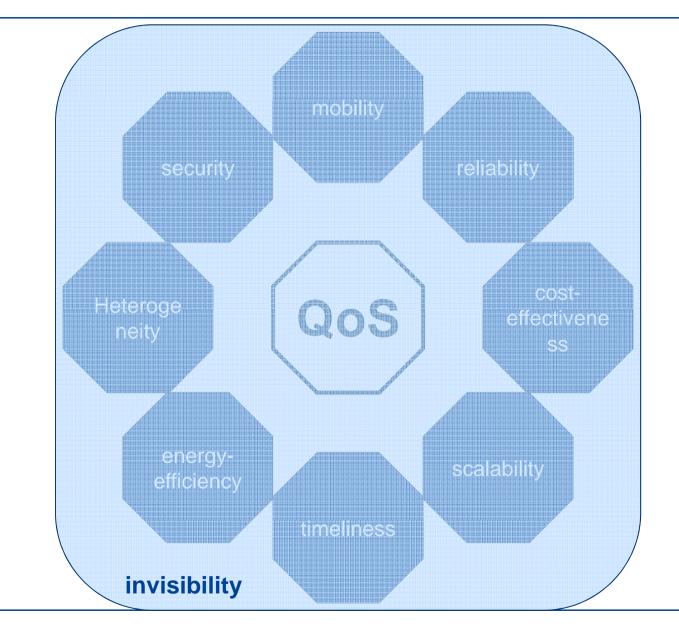
- WSN applications may involve a diverse set of mobile entities
 - vehicles, equipment, animals, humans, fluids,...
- instantiated in
 - nodes' mobility
 - isolated or in groups, sensor nodes or gateways
 - data sinks' mobility
 - on purpose (e.g. data mules) or due to user/application requirements
 - event mobility
 - kind of mobility, e.g. event tracking (e.g. tsunami, gas leak, herd, fire)
- mobility speed
 - fast: > 20 km/h
 - slow: < 20 km/h

- Radio-cell/cluster boundaries
 - intra-cell (or intra-cluster) mobility
 - mobile node moves without losing connectivity with base station (structured network) or peers (ad-hoc network)
 - requires no mobility management
 - inter-cell (or inter-cluster) mobility
 - mobile node moves outside the radio coverage of a certain cell/cluster into another cell/cluster
 - hand-off (or hand-over) management mechanism is required


- Mobility support can be very helpful, e.g.
 - to maintain and repair network connectivity (self-configuration)
 - to improve network coverage
 - to balance energy consumption (e.g. rotating cluster-heads/routers)
 - to adapt to dynamic stimulus changes (collect data upon event)
 - to collect data (data mules), extending WSN lifetime
 - to increase QoS in critical regions, upon events
 - to encompass new applications or extend "current" applications' boundaries with extra capabilities
 - ultimately, to increase users' satisfaction Image:

- Research challenges
 - mobility support in WSNs is still in its infancy
 - investigate on mechanisms for transparent, energy-efficient and reliable mobility support with no network inaccessibility times
 - usually, protocols (e.g. ZigBee) only support joining/leaving of nodes
 - analyse how fast mobility can be supported (even harder to tackle)
 - investigate new MAC and routing mechanisms that are adaptive to dynamical changes (traffic load, topology) caused by mobility
 - develop WSN simulation tools/models encompassing mobility
 - find new localization mechanisms that are energy/cost-efficient
 - propose accurate radio link quality estimators
 - a basic building block for mobility, for hand-off decisions

Quality-of-Service – security

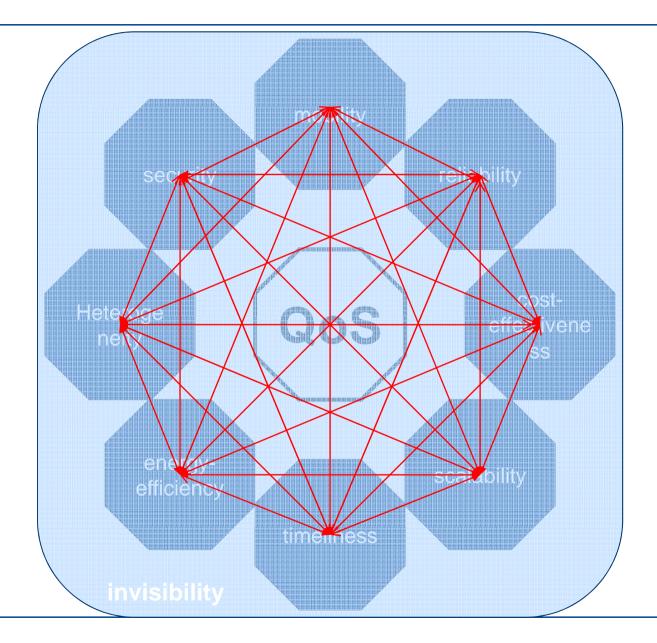


Quality-of-Service – security

A States

- Nothing to add to
 - Gianluca Dini talk [©]
- Just note that there is the need to
 - balance security with other QoS properties
 - implementing security may imply additional hardware, additional computations, additional communications, longer messages,...

Quality-of-Service – invisibility

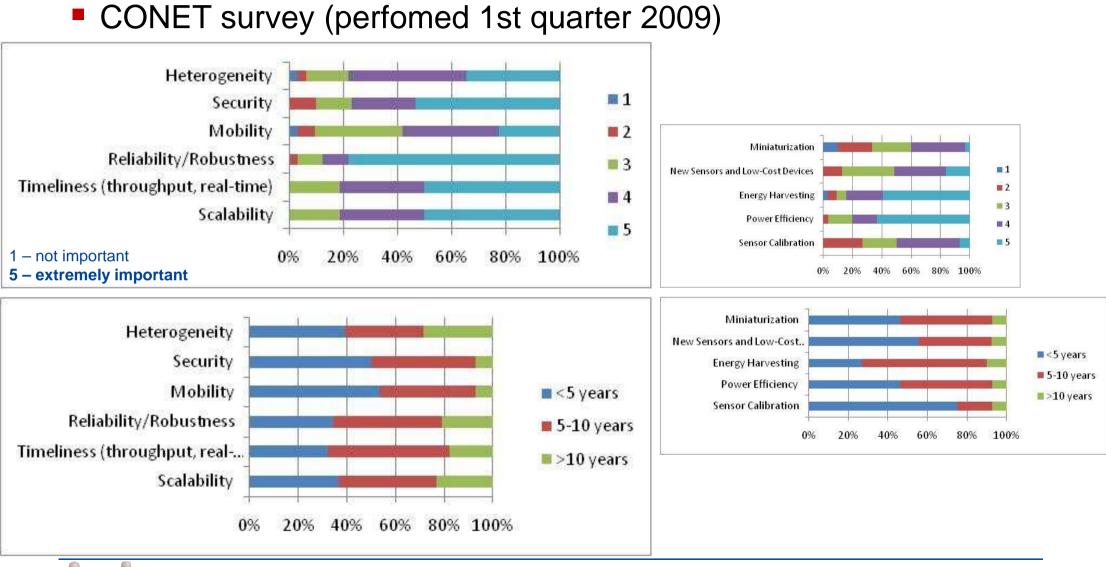


Quality-of-Service - invisibility

- Invisibility
 - Mark Weiser's vision
 - "the best computer is a quiet, invisible servant"
 - embed system/components in the environment:
 - invisible (to the human eye)
 - inaudible (to the human ear)
 - environmental impact
 - avoiding "buying new is cheaper than maintaining/repairing/recharging"
 - recyclable materials, sustainable systems
 - ecologically friendly (fauna, flora, land, sea, air)

if we get "calm technology", we can just relax ©

Quality-of-Service – multilateral impacts


Quality-of-Service – multilateral impacts

- just one example:
 - providing timeliness guarantees (e.g. throughput, deadlines) may impact on:
 - Scalability the WSN may not be able to grow
 - Security lighter algorithms and message overheads
 - Reliability timing/information redundancy may not be feasible
 - Cost-effectiveness powerful hardware is more expensive
 - Mobility network inaccessibility times not tolerated
 - Energy-efficiency increasing bit-rate and duty-cycles costs energy
 - Heterogeneity network dimensioning/planning may be harder
- you can easily think about other implications...

Quality-of-Service – relevance+timeline

Concluding remarks

- QoS is of growing importance in WSN applications
 - e.g. Cooperating Objects, Cyber-Physical Systems
- But the provision of QoS in WSNs is very challenging due to
 - (usually) severe limitations of WSN nodes
 - (usually) harsh nature of the WSN environments
 - large-scale nature of (most) WSNs
 - high interdependency btw QoS properties often contradictory
- Approach
 - reach maturity (real/effective solutions) for every property
 - design network/system planning/dimensioning models, methodologies and tools for achieving optimal trade-offs

The <u>eQualiSer</u> ©

\$ 4

♪ ♪ √3

N

17

やな

Final highlights

"Cooperating Objects Roadmap 2009"

- a book on SOTA and future directions in the CO/WSN area
- download at <u>http://www.cooperating-objects.eu/roadmap/download/</u>
- new (updated/refined) version to appear in 2010

CONET newsletter

- o monthly releases; free subscription!
- <u>http://www.cooperating-objects.eu/newsletter</u>

check job opportunities at CISTER (PhD or post-doc)

- o go to <u>http://www.cister.isep.ipp.pt/jobs/</u>
- several areas, including WSN and CPS
- engage on a thrilling experience ③