

About the title of the talk (1)

 enabling ubiquitous computing and cyber-physical systems with wireless sensor/actuator networks

CodeBlue: An Ad Hoc Sensor Network Infrastructure for Emergency Medical Care (2004), by David Malan, Thaddeus Fulford-Jones, Matt Welsh, Steve Moulton http://fiji.eecs.harvard.edu/CodeBlue

ChallengesWSNBSNScaleAs large as the environment being monitored (metres/kilometres)As large as human body parts (millimetres/centimstres)Node NumberGreater number of nodes required for accurate, wide area coverageFewer, more accurate sensors nodes required (limited by space)Node FunctionMultiple sensors, each perform dedicated tasksSingle sensors, each perform multiple tasksNode AccuracyLarge node number compensates for accuracy and allows result validationLimited node number with each required to be robust and accurateNode SizeSmall size preferable but not a major limitation in many casesPervasive monitoring and need for miniaturiaationDynamicsExposed to extremes in weather, noise, and asynchronyExposed to more predictable environment but motion artefacts is a challengeEvent DetectionEarly adverse event detection desirable; failure often reversibleEarly adverse events detection vital; human tissue failure irreversibleVariabilityMuch more likely to have a fixed or static structureBiological variation and complexity means a more variable structureData ProtectionLower level wireless data transfer security required for privationInaccessible and difficult to replace in implantable settingPower SupplyAccessible and likely to be changed more easily suppliedLikely to be lower as energy is more difficult to supplyEnergy ScavengingSolar, and wind power are most likely candidatesMotion (vibration) and thermal (hody heat) most likely to increase costAccessibSensors more easily supplicationsA must for implantable and some external sensors. Likely to increase cost </th <th colspan="8">Problems and Challenges (6) Body Sensor Networks might be even more challenging [Yang, Guang-Zhong (Ed.), 2006]</th>	Problems and Challenges (6) Body Sensor Networks might be even more challenging [Yang, Guang-Zhong (Ed.), 2006]							
Scale As large as the environment being monitored (metres/kilometres) As large as human body parts (millimetres/centimetres) Node Number Greater number of nodes required for accurate, wide area coverage Fewer, more accurate sensors nodes required (limited by space) Node Function Multiple senson, each perform dedicated tasks Single sensors, each perform multiple tasks Node Accuracy Large node number compensates for accuracy and allows result vali- dation Limited node number with each required to be robust and accurate Node Size Small size preferable but not a major limitation in many cases Pervasive monitoring and need for miniaturisation Dynamics Exposed to extremes in weather, noise, and asynchrony Exposed to more predictable environment but motion artefacts is a chal- lenge Event Detection Early adverse event detection desirable; failure often reversible Early adverse events detection vital; human tissue failure irreversible Variability Much more likely to have a fixed or static structure Biological variation and complexity means a more variable structure Data Protection Lower level wireless data transfer security required High level wireless data transfer security required to protect patient in- formation Power Supply Accessible and likely to be changed more easily and frequently Inaccessible and difficult to replace in implantable se	Challenges	WSN	BSN					
Node Number Greater number of nodes required for accurate, wide area coverage Fewer, more accurate sensors nodes required (limited by space) Node Function Multiple sensors, each perform dedicated tasks Single sensors, each perform multiple tasks Node Accuracy Large node number compensates for accuracy and allows result vali- dation Limited node number with each required to be robust and accurate Node Size Small size preferable but not a major limitation in many cases Pervasive monitoring and need for miniaturisation Dynamics Exposed to extremes in weather, noise, and asynchrony Exposed to more predictable environment but motion artefacts is a challenge Event Detection Early adverse event detection desirable; failure often reversible Early adverse events detection vital; human tissue failure irreversible Variability Much more likely to have a fixed or static structure Biological variation and complexity means a more variable structure Data Protection Lower level wireless data transfer security required High level wireless data transfer security required to protect patient in-formation Power Supply Accessible and likely to be changed more easily and frequently Inaccessible and difficult to replace in implantable setting Power Supply Accessible and likely to aver as more usilikely candidates Motion (vibration) and thermal (hody heat) most l	Scale	As large as the environment being monitored (metres/kilometres)	As large as human body parts (millimetres/centimetres)					
Node Function Multiple sensors, each perform dedicated tasks Single sensors, each perform multiple tasks Node Accuracy Large node number compensates for accuracy and allows result vali- dation Limited node number with each required to be robust and accurate Node Size Small size preferable but not a major limitation in many cases Pervasive monitoring and need for miniaturisation Dynamics Exposed to extremes in weather, noise, and asynchrony Exposed to more predictable environment but motion artefacts is a challenge Event Detection Early adverse event detection desirable; failure often reversible Early adverse events detection vital; human tissue failure irreversible Variability Much more likely to have a fixed or static structure Biological variation and complexity means a more variable structure Data Protection Lower level wireless data transfer security required Immation Power Supply Accessible and likely to be changed more easily and frequently Inaccessible and difficult to replace in implantable setting Power Demand Likely to be greater as power is more easily supplied Likely to be lower as energy is more difficult to supply Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (hody heat) most likely to increase cost Context Awareness Not	Node Number	Greater number of nodes required for accurate, wide area coverage	Fewer, more accurate sensors nodes required (limited by space)					
Node Accuracy Large node number compensates for accuracy and allows result vali- dation Limited node number with each required to be robust and accurate Node Size Small size preferable but not a major limitation in many cases Pervasive monitoring and need for miniaturisation Dynamics Exposed to extrems in weather, noise, and asynchrony Exposed to more predictable environment but motion artefacts is a challenge Event Detection Early adverse event detection desirable; failure often reversible Early adverse events detection vital; human tissue failure irreversible Variability Much more likely to have a fixed or static structure Biological variation and complexity means a more variable structure Data Protection Lower level wireless data transfer security required to protect patient information Formation Power Demand Likely to be greater as power is more easily aupfried Likely to be lower as energy is more difficult to supply Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (hody heat) most likely candidates Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult and requires biodegradability Blocompatibility Not a consideration in most applications A must for implantable and some extend sensors. Likely to increase cost	Node Function	Multiple sensors, each perform dedicated tasks	Single sensors, each perform multiple tasks					
Node Size Small size preferable but not a major limitation in many cases Pervasive monitoring and need for miniaturisation Dynamics Exposed to extremes in weather, noise, and asynchrony Exposed to more predictable environment but motion artefacts is a challenge Event Detection Early adverse event detection desirable; failure often reversible Early adverse events detection vital; human tissue failure irreversible Variability Much more likely to have a fixed or static structure Biological variation and complexity means a more variable structure Data Protection Lower level wireless data transfer security required High level wireless data transfer security required to protect patient in-formation Power Supply Accessible and likely to be changed more easily and frequently Inaccessible and difficult to replace in implantable setting Power Demand Likely to be greater as power is more easily supplied Likely to be lower as energy is more difficult to supply Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (hody heat) most likely candidates Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult and requirers biodegradability Biocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost </td <td>Node Accuracy</td> <td>Large node number compensates for accuracy and allows result vali- dation</td> <td>Limited node number with each required to be robust and accurate</td>	Node Accuracy	Large node number compensates for accuracy and allows result vali- dation	Limited node number with each required to be robust and accurate					
Dynamics Exposed to extremes in weather, noise, and asynchrony Exposed to more predictable environment but motion artefacts is a challenge Event Detection Early adverse event detection desirable; failure often reversible Early adverse events detection vital; human tissue failure irreversible Variability Much more likely to have a fixed or static structure Biological variation and complexity means a more variable structure Data Protection Lower level wireless data transfer security required High level wireless data transfer security required to protect patient in-formation Power Supply Accessible and likely to be changed more easily and frequently Inaccessible and difficult to replace in implantable setting Power Demand Likely to be grater as power is more easily supplied Likely to be lower as energy is more difficult to supply Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (hody heat) most likely candidates Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult and requirers biodegradability Biocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost Context Awareness Not so important with static sensors where environments are well defined Very important because body physio	Node Size	Small size preferable but not a major limitation in many cases	Pervasive monitoring and need for miniaturisation					
Event Detection Early adverse event detection desirable; failure often reversible Early adverse events detection vital; human tissue failure irreversible Variability Much more likely to have a fixed or static structure Biological variation and complexity means a more variable structure Data Protection Lower level wireless data transfer security required High level wireless data transfer security required to protect patient information Power Supply Accessible and likely to be changed more easily and frequently Inaccessible and difficult to replace in implantable setting Power Demand Likely to be greater as power is more easily supplied Likely to be lower as energy is more difficult to supply Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (body heat) most likely candidates Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult and requires biodegradability Biocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost Context Awareness Not so important with static sensors where environments are well defined Very important because body physiology is very sensitive to context change Wireless Technology Bluetooth, Zigbee, GPRS, and wireless LAN, and RF already offer solutions Lows	Dynamics	Exposed to extremes in weather, noise, and asynchrony	Exposed to more predictable environment but motion artefacts is a chal- lenge					
Variability Much more likely to have a fixed or static structure Biological variation and complexity means a more variable structure Data Protection Lower level wireless data transfer security required High level wireless data transfer security required to protect patient information Power Supply Accessible and likely to be changed more easily and frequently Inaccessible and difficult to replace in implantable setting Power Demand Likely to be greater as power is more easily supplied Likely to be lower as energy is more difficult to supply Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (body heat) most likely candidates Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult and requires biodegradability Biocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost Context Awareness Not so important with static sensors where environments are well defined Very important because body physiology is very sensitive to context change Wireless Technology Bluetooth, Zigbee, GPRS, and wireless LAN, and RF already offer so- lutions Lows of data more significant, and may require additional measures to en- laters of a data mansfer is likely to be compensated by	Event Detection	Early adverse event detection desirable; failure often reversible	Early adverse events detection vital; human tissue failure irreversible					
Data Protection Lower level wireless data transfer security required High level wireless data transfer security required to protect patient in- formation Power Supply Accessible and likely to be changed more easily and frequently Inaccessible and difficult to replace in implantable setting Power Demand Likely to be greater as power is more easily supplied Likely to be lower as energy is more difficult to supply Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (body heat) most likely candidates Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult and requires biodegradability Biocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost Context Awareness Not so important with static sensors where environments are well defined Very important because body physiology is very sensitive to context change Wireless Technology Bluetooth, Zigbee, GPRS, and wireless LAN, and RF already offer so- butions Lows of data more significant, and may require additional measures to en- transfer is likely to be compensated by	Variability	Much more likely to have a fixed or static structure	Biological variation and complexity means a more variable structure					
Power Supply Accessible and likely to be changed more easily and frequently Inaccessible and difficult to replace in implantable setting Power Demand Likely to be greater as power is more easily supplied Likely to be lower as energy is more difficult to supply Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (body heat) most likely candidates Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult an requires biodegradability Blocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost Context Awareness Not so important with static sensors where environments are well de- fined Very important because body physiology is very sensitive to context change Wireless Technology Bluetooth, Zigbee, GPRS, and wireless LAN, and RF already offer so- lutions Lows of data more significant, and may require additional measures to en- teriors	Data Protection	Lower level wireless data transfer security required	High level wireless data transfer security required to protect patient in- formation					
Power Demand Likely to be greater as power is more easily supplied Likely to be lower as energy is more difficult to supply Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (body heat) most likely candidates Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult and requires biodegradability Blocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost Context Awareness Not so important with static sensors where environments are well defined Very important because body physiology is very sensitive to context change Wireless Technology Buetooth, Zigbee, GPRS, and wireless LAN, and RF already offer solutions Lows of data more significant, and may require additional measures to en-	Power Supply	Accessible and likely to be changed more easily and frequently	Inaccessible and difficult to replace in implantable setting					
Energy Scavenging Solar, and wind power are most likely candidates Motion (vibration) and thermal (body heat) most likely candidates Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult and requires biodegradability Biocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost Context Awareness Not so important with static sensors where environments are well defined Very important because body physiology is very sensitive to context change Wireless Technology Buteooth, Zigbee, GPRS, and wireless LAN, and RF already offer so- lutions Low power wireless required, with signal detection more challenging Lows of data more significant, and may require additional measures to en- Loss of data more significant, and may require additional measures to en-	Power Demand	Likely to be greater as power is more easily supplied	Likely to be lower as energy is more difficult to supply					
Access Sensors more easily replaceable or even disposable Implantable sensor replacement difficult and requires biodegradability Biocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost Context Awareness Not so important with static sensors where environments are well defined Very important because body physiology is very sensitive to context change Wireless Technology Buetooth, Zigbee, GPRS, and wireless LAN, and RF already offer so- lutions Low power wireless required, with signal detection more challenging Lows of data more significant, and may require additional measures to en- Loss of data more significant, and may require additional measures to en-	Energy Scavenging	Solar, and wind power are most likely candidates	Motion (vibration) and thermal (body heat) most likely candidates					
Biocompatibility Not a consideration in most applications A must for implantable and some external sensors. Likely to increase cost Context Awareness Not so important with static sensors where environments are well defined Very important because body physiology is very sensitive to context change Wireless Technology Buteooth, Zigbee, GPRS, and wireless LAN, and RF already offer so- lutions Low power wireless required, with signal detection more challenging Detection, Loss of data during wireless transfer is likely to be compensated by Loss of data more significant, and may require additional measures to en-	Access	Sensors more easily replaceable or even disposable	Implantable sensor replacement difficult and requires biodegradability					
Context Awareness Not so important with static sensors where environments are well de- fined Very important because body physiology is very sensitive to context change Wireless Technology Buetooth, Zigbee, GPRS, and wireless LAN, and RF already offer so- lutions Low power wireless required, with signal detection more challenging Determine function Loss of data more significant, and may require additional measures to en-	Biocompatibility	Not a consideration in most applications	A must for implantable and some external sensors. Likely to increase cost					
Bluetooth, Zigbee, GPRS, and wireless LAN, and RF already offer so- lutions Low power wireless required, with signal detection more challenging Data Target for Loss of data during wireless transfer is likely to be compensated by Loss of data more significant, and may require additional measures to en-	Context Awareness	Not so important with static sensors where environments are well de- fined	Very important because body physiology is very sensitive to context change					
Loss of data during wireless transfer is likely to be compensated by Loss of data more significant, and may require additional measures to en-	Wireless Technology	Bluetooth, Zigbee, GPRS, and wireless LAN, and RF already offer so- lutions	Low power wireless required, with signal detection more challenging					
Data Iranster number of sensors used sure QoS and real-time data interrogation capabilities	Data Transfer	Loss of data during wireless transfer is likely to be compensated by number of sensors used	Loss of data more significant, and may require additional measures to en- sure QoS and real-time data interrogation capabilities					

Techn	ology (1) – mote exar	nples
Node Type	Name	Typical	
		Application	1
Specialized Sensing Platform	Spec	Specialized low-bandwidth sensor, or RFID tag	
Generic Sensor Platform	Mica, Mica2, MicaZ, Telos, ESB, Firefly, Particle, SquidBee, SHIMMER	General purpose sensing or communication relay	
High-bandwidth sensing/Gateway	iMote1, iMote2, SunSPOT, Stargate1, Stargate2, gumstix	High bandwidth sensing (video, acoustic, vibration), communication aggregation, compute node or gateway	

						\frown	
Techno	logy	(2) -	mot	te evo	olutio	n	
Mote Type	WeC R	tené René 2	Dot	Mica	Mica2Dot	Mica 2	Telos
Year	1998 19	999 2000	2000	2001	2002	2002	2004
	@ •						18.5
Microcontroller							
Туре	AT90LS8535	i ATr	nega163		ATmega128		TI MSP430
Program memory (KB)	8		16		128		60
RAM (KB)	0.5		1		4		2
Active Power (mW)	15		15	8	2	33	3
Sleep Power (µW)	45		45	75	5	75	6
Wakeup Time (µs)	1000		36	18	0	180	6
Nonvolatile storage							
Chip		24LC256			AT45DB041B	3	ST M24M01S
Connection type		1 ² C			SPI		12C
Size (KB)		32			512		128
Communication				-			
Radio		TR1000		TR1000	CC	1000	CC2420
Data rate (kbps)		10		40	38.4		250
Modulation type		OOK		ASK	FSK		O-QPSK
Receive Power (mW)		9		12	29		.38
Transmit Power at 0dBm (mW)		36		36	36 42		35
Power Consumption							
Minimum Operation (V)	2.7		2.7		2.7		1.8
Total Active Power (mW)		24		27	44	89	41
Programming and Sensor Interfac	ie .						
Expansion	none 51	-pin 51-pin	none	51-pin	19-pin	51-pin	10-pin
Communication	IEEE 12	84 (programmi	ng) and RS?	32 (requires ad	ditional hardy	ware)	USB
Integrated Sensors	no	no no	yes	no	no	no	yes

recimology (3) - mole common radios	Те	chno	logy (3) – mote	common	radios
-------------------------------------	----	------	--------	------------------	--------	--------

	CC1000	CC1021	CC2420	TR1000	XE1205
Manufacturer	Chipcon	Chipcon	Chipcon	RFM	Semtech
Operating Frequency [MHz]	300 - 1000	402 - 470 / 804 - 940	2400	916	433 / 868 / 915
Bit Rate [kbps]	76.8	153.6	250	115.2	1.2 - 152.3
Sleep Mode [uA]	0.2 – 1	1.8	1	0.7	0.2
RX [mA]	11.8 (868 MHz)	19.9	19.7	3.8 (115.2kbps)	14
TX Min [mA]	8.6 (-20dBm)	14.5 (-20dBm)	8.5 (-25dBm)		33 (+5dBm)
TX Max [mA]	25.4 (+5dBm)	25.1 (+5dBm)	17.4 (0dBm)	12 (+1.5dBm)	62 (+15dBm

١	ſe	chr RFID t	nology aq (or transpon	(4) – R	FID		R
		 is a 	n object that can be a	applied to or incor	porated into a produ	uct, animal, or perso	on for
		the	purpose of identificat	tion using radio w	aves		
		 fror 	n centimeters to meter	ers distance (tag-r	reader) with or witho	out line-of-sight	
45.		 con 	nposed of				
m		•	antenna - for receivi	ng and transmitting	the signal		
WINDLDIA		•	integrated circuit (op	otional) for storing a	and processing inform	nation, modulating an	d
те технулурыы		_	demodulating a (RF) signal, and other	specialized functions		
		Types		Active Tag	Semi-passive Tag	Passive Tag	
			Power Source	Battery on tag.	Battery for chip opera- tion. Radio wave energy from Reader for communication.	Radio wave energy from Reader for operation and communication.	
			Tag Signal Availability	Always on, 100 feet	Only within field of reader	Only within field of reader, less than 10 feet	
			Signal Strength Tag	High	Low	Very low	
			Required Signal Strength from Reader	Very low	Low	Very high	
any with	simi WSN	larities nodes?	Typical Applications	Useful for tracking high-va scanned over long ranges track.	lue goods that need to be Example: railway cars on a	Useful for high-volume goods, where items can be read from short ranges. Example: retail check out	59
			http://java.sun.com/d	leveloper/technicalAr	ticles/Ecommerce/rfid/	CILCO SAL	

Technology (7) – communication protocols									
				Distance between nodes	Nodes located in the same	Network Class (dimension)	Example protocols		
()				x µm – x mm	Chip	NanoNetworks,NoC (Networks on Chip)	?		
1				x mm – x m	Body	BAN (Body Area Networks)	(IEEE 802.15.6)		
1	WSA	N can span		x m – x0 m	Room	PAN (Personal Area Networks)	USB, FireWire, 6lowpan IEEE 802.15.1/Bluetooth, IEEE 802.15.4/ZigBee, IEEE 802.15.3/UWB		
	over	all of these		x0 m – x00 m	Building, Campus	LAN (Local Area Networks)	IEEE 802.11/WiFi, IEEE 802.3/Ethernet, WirelessHART, fieldbus networks		
Interprocessor	Tanemba Processors	aum Example		x00 m – x0 km	City	MAN (Metropolitan Area Networks)	IEEE 802.16/WiMAX, IEEE 802.20/MBWA, ATM, FDDI		
1 m	Square meter	Personal area network		×			IEEE 802.22/WRAN,		
10 m	Room]]		x0 km – x km	Country –	(Wide Area Networks)	ATM, X.25, Frame Relay,		
100 m	Building	Local area network					Satemle		
1 km	Campus	J				Aluce O			
10 km	City	Metropolitan area network				Alves 🙂			
100 km	Continent	Wide area network							
10,000 km	Planet	The Internet							

Techr • some o tens	OS for reso s of others	8) – opera ource-cons	ating sy strained	stems I WSN devices
Operating System	Origin	Open source	Real-time	Link
TinyOS	UCB, Intel (USA)	Yes	No	http://www.tinyos.net
Contiki	SICS (Sweden)	Yes	No	http://www.sics.se/contiki
Nano-RK	CMU (USA)	Yes	Yes	http://www.nanork.org
ERIKA	SSSUP (Italy)	Yes	Yes	http://erika.sssup.it
MANTIS	UC Boulder (USA)	Yes	No	http://mantis.cs.colorado.edu
SOS	UCLA (USA)	Yes	No	https://projects.nesl.ucla.edu/ public/sos-2x/doc
				6

Technology (7) – simulation tools some network simulation tools tens of others 								
Drigin	Open-source	WSN oriented?	Link					
OPNET Tech. Inc.	No (free for U.)	Yes	http://www.opnet.com					
ΓU Budapest (Hung)	Yes	No	http://www.omnetpp.org					
NICTA (Australia)	Yes	Yes	http://castalia.npc.nicta.com.au					
JSC (USA)	Yes	No	http://nsnam.isi.edu/nsnam					
JCLA (USA)	Yes	Yes	http://nesl.ee.ucla.edu/projects/s ensorsim/					
JCLA (USA)	Yes	No	http://pcl.cs.ucla.edu/projects/glo mosim					
JCB (USA)	Yes	Yes	http://www.cs.berkeley.edu/~pal/ research/tossim.html					
Rensselaer PI (USA)	Yes	Yes	http://www.ita.cs.rpi.edu/sense					
k L L L L L L L L L L	of others rigin PNET Tech. Inc. U Budapest (Hung) ICTA (Australia) ICTA (Australia) SC (USA) CLA (USA) CLA (USA) CLA (USA) CB (USA) cB (USA)	rigin Qpen-source PNET Tech. Inc. No (free for U.) U Budapest (Hung) Yes ICTA (Australia) Yes SC (USA) Yes CLA (USA) Yes CLA (USA) Yes CLA (USA) Yes CLA (USA) Yes	rigin Open-source WSN oriented? PNET Tech. Inc. No (free for U.) Yes U Budapest (Hung) Yes No ICTA (Australia) Yes Yes SC (USA) Yes No CLA (USA) Yes Yes CLA (USA) Yes No CLA (USA) Yes Yes					

BEGIN Throw	INING away to start	http://www	ut what The	Ph.D. Go	nave b ame	een do The JENNER FOR VACC	EDWARD INSTITUTE THE RESEARCH
T Your su gives yo ti Go on 3	1. Ipervisor Iu project t le. 3 spaces	2.	3. You are full of enthusiasm Have another turn.	4. Realise supervisor has given nothing but project tilte.	5. Goto library- you can't understand cataloguel Miss one turn.	6. The important reference is in Japanese. Back two spaces	7.
	14.	13. Unlucky for some. You become disillusioned, miss 1 turn.	12, END OF FIRST YEAR	11. Examiners not impressed by first year report, throw 1 to cont.	10. Do extra work on first year report extra turn	9. Use beer to buy technical assistance. Go on two spaces.	8. Need supervisors help. Miss one turn finding him.
15. You depr Miss to	u become ressed. wo turns.	16. You become more depressed Miss three turns.	17. Change project. Go back to beginning.	18. Change supervisor. Go on 6 spaces.	19. Do lab demonstrations to get some dosh, Go on 2 spaces	20.	21. Lab demos take up too much of your time. Back 4 spaces.
28, You think never Yo probab	i begin to you will finish. u are bly right.	27. Beer monster strikes! Spend 1 turn recovering.	26. Work every weekend for two months. Go no six spaces.	25. END OF SECOND YEAR No results. Who cares, throw again!	24. Exp <mark>eriment</mark> are working. Go on 4 spaces	23. Specimens incorrectly labelled. Go back to 20.	22.
	29.	30. You spend more time complaining than working! Miss 1 turn.	31. You realise your mates are earning 5 times your grant, have a good cry.	32, You are asked why you started a Ph.D. Miss a turn finding a reason	33. You are offered a job, you may cont. or retire from game.	34. Start writing up. Now you are really depressed. Miss 5 turns.	35.
42, Yo is a congro now j qu	our Ph.D. varded t ula tions oin dole Jeuel	41. You are asked to resubmit thesis. Back to 33.	40. You decide Ph.D isn't worth the bother, Withdraw now, Game over	39. 3 years are up, and you get a job. Go on 3 spaces	38. It proves impossible to write up and work. Go to 33.	37. Your thesis will disprove external examiners work. Go back to 28,	36. Your data have just been published by rival group. Go back to 28.

