

Implementation of the ZigBee Network Layer
with Cluster-tree Support

André CUNHA

Mário ALVES

Anis KOUBÂA

www.hurray.isep.ipp.pt

Technical Report

TR-070510

Version: 1.0

Date: 26-05-2007

Implementation of the ZigBee Network Layer (in nesC/TinyOS)

André CUNHA, Mário ALVES, Anis KOUBÂA

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: arec@isep.ipp.pt, mjf@isep.ipp.pt, anis@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract

 While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising
technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in their
specifications are still open. One of those ambiguous issues is how to build a synchronized
cluster-tree network. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the
synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to
star-based networks, while they support multi-hop networking using the peer-to-peer mesh
topology, but with no synchronization. Even though both specifications mention the possible
use of cluster-tree topologies the description on how to effectively construct such a network
topology is missing.

 This technical describes the implementation details of the ZigBee Network Layer on top
of our implementation IEEE 802.15.4 for nesC/TinyOS. This implementation enables the
cluster-tree network topology with our proposed mechanism for beacon scheduling in order to
enable an efficient use of synchronized cluster-tree networks. This implementation induces
minor changes to our IEEE 802.15.4 implementation, the open-ZB (www.open-zb.net), in order
to implement our proposed Time Division Beacon Scheduling approach.

 This technical report describes the implemented mechanisms and gives an intuition how
to effectively use this implementation with a ZigBee Cluster-tree network topology.

Contents

1 Introduction .. 1

2 Overview of the IEEE 802.15.4/ZigBee Address Assignment and Tree Routing mechanisms 2

2.1 Introduction .. 2

2.2 Association Mechanism ... 3

2.3 Short Address Assignment ... 4

2.4 ZigBee Tree Routing Mechanism .. 6

3 Network Layer Implementation.. 8

3.1 Overview .. 8

3.2 Network Layer Reference Model ... 9

3.3 Components NWK and NWKM .. 11

3.4 Component NWK... 11
3.4.1 Provided Interfaces... 11
3.4.2 Component Graph .. 12

3.5 Component NWKM ... 13
3.5.1 Required Interfaces .. 13
3.5.2 Provided Interfaces... 13
3.5.3 Variables .. 14
3.5.4 Function description... 14

3.6 Implementation of the protocol functionalities... 15
3.6.1 The Time Division Beacon Scheduling Mechanism .. 15
3.6.2 Creating a new network as a ZigBee Coordinator.. 18
3.6.3 Start Sending beacons as a ZigBee Router... 18
3.6.4 Joining a Network .. 19
3.6.5 Cluster-tree Routing ... 20
3.6.6 Data Transmission.. 21

4 Auxiliary Files (Under contrib.hurray.tos.lib.nwk). .. 22

5 Example Application .. 27

6 References ... 28

Figures

Figure 1 – Association request command format [3] ...3

Figure 2 – Association request capability information field format [3] ...3

Figure 3 – Association response command format [3] ...3

Figure 4 – Association request short address values [3]...4

Figure 5 – Address assignment scheme example. ..5

Figure 6 – PAN Coordinator addressing scheme (decimal values). ...6

Figure 7 – Network layer frame format [1] ..6

Figure 8 – TinyOS implementation file structure...8

Figure 9 - TinyOS implementation diagram...9

Figure 10 – Network layer reference model ...9

Figure 11 – TinyOS NWK component diagram...12

Figure 12 – MCPS_DATA.request TxOptions format [3] ...17

Figure 13 – Time Division Beacon Scheduling MCPS_DATA.request TxOptions format ...17

Figure 14 – Negotiation Fields ...17

Figure 15 – Negotiation diagram..18

Figure 16 - MLME_ASSOCIATE.indication flow chart ...19

Figure 17 - MCPS_DATA.indication flow chart ...20

Figure 18 - NLDE_DATA request flow chart ..21

Tables

Table 1 - NLDE-SAP primitives ..10

Table 2 - NLME-SAP primitives..11

Table 3 - ZigBee Network layer constant description..22

Table 4 - NWK layer auxiliary constants description...23

Table 5 - Structure definitions on the nwk_const.h file..24

Table 6 - General NWK enumeration description. ...25

Table 7 – Device Types enumeration. ..25

Table 8 – Neighbour device relationship enumerations ...25

Table 9 - NWK GET/SET reference PIB enumerations description. ...26

Acronyms and abbreviations

ACL access control list
AES advanced encryption standard
BE backoff exponent
BER bit error rate
BI beacon interval
BO beacon order
BPSK binary phase-shift keying
BSN beacon sequence number
CAP contention access period
CBC-MAC cipher block chaining message
authentication code
CCA clear channel assessment
CFP contention-free period
CID cluster identifier
CLH cluster head
CRC cyclic redundancy check
CSMA-CA carrier sense multiple access
with collision avoidance
CTR counter mode
CW contention window (length)
DSN data sequence number
DSSS direct sequence spread
spectrum
ED energy detection
FCS frame check sequence
FFD full-function device
FH frequency hopping
FHSS frequency hopping spread
spectrum
GTS guaranteed time slot
IFS interframe space or spacing
LAN local area network
LIFS long interframe spacing
LLC logical link control
LQ link quality
LQI link quality indication
LPDU LLC protocol data unit
LR-WPAN low-rate wireless personal area
network
LSB least significant bit
MAC medium access control
MCPS MAC common part sublayer
MCPS-SAP MAC common part sublayer-
service access point
MFR MAC footer

MHR MAC header
MLME MAC sublayer management
entity
MLME-SAP MAC sublayer management
entity-service access point
MSB most significant bit
MSC message sequence chart
MPDU MAC protocol data unit
MSDU MAC service data unit
NB number of backoff (periods)
OSI open systems interconnection
PAN personal area network
PD-SAP PHY data service access point
PDU protocol data unit
PER packet error rate
PHR PHY header
PHY physical layer
PIB PAN information base
PLME physical layer management
entity
PLME-SAP physical layer management
entity-service access point
PPDU PHY protocol data unit
PSDU PHY service data unit
RF radio frequency
RFD reduced-function device
RSSI received signal strength
indication
RX receive or receiver
SAP service access point
SD superframe duration
SPDU SSCS protocol data units
SDU service data unit
SFD start-of-frame delimiter
SHR synchronization header
SIFS short interframe spacing
SO superframe order
SRD short-range device
SSCS service specific convergence
sublayer
TRX transceiver
TX transmit or transmitter
WLAN wireless local area network
WPAN wireless personal area network

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

1 Introduction

This technical report gives a brief overview of the ZigBee Network Layer mechanisms[1], namely the
association and addressing schemes, the tree-routing and some features of the Network Layer Information
Base.

 The proposed implementation supports the cluster-tree network topology using a beacon scheduling
mechanism, as proposed on [2], to effectively schedule the transmission offsets of every ZigBee router in the
cluster-tree. In this implementation, we opted on a basic approach for the beacon scheduling based on time
division and on a negotiation mechanism before beacon transmission. The ZigBee Coordinator (ZC) is
responsible for the scheduling. Currently, the ZC has a static definition of the schedule based on the routers
short addresses. For getting the implementation details of the IEEE 802.15.4[3], the interested reader is
referred to [4,5].

 Note that in this implementation, some add-ons were needed in the IEEE 802.15.4 MAC sublayer[3],
namely the division of the send buffer into two new buffers: the downstream buffer for the transmissions
downstream in the network tree and the upstream buffer for the upstream transmissions. In addition, note that
some of the implemented network layer mechanisms were modified, namely, the inclusion of a new active
period shared with the parent device.

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

2

2 Overview of the IEEE 802.15.4/ZigBee Address Assi gnment and
Tree Routing mechanisms

2.1 Introduction

In ZigBee Networks there are 3 types of devices:

• ZigBee Coordinator – ZC

o One for each ZigBee Network;

o Initiates and configures the Network formation;

o Acts as an IEEE 802.15.4 Personal Area Network (PAN) coordinator;

o Acts as ZigBee Router (ZR) once the network is formed;

o Is a Full Functional Device (FFD) – implements the full protocol stack.

• ZigBee Router – ZR

o Not used in star topology networks;

o Associates with ZC or with previously associated ZR;

o Acts as an IEEE 802.15.4 PAN coordinator;

o Participates in multi-hop routing of messages.

o Is a Full Functional Device (FFD) – implements the full protocol stack.

• ZigBee End Device –ZED

o Does not allow other devices associate with it;

o Does not participate in routing;

o Can be a Reduced Function Device (RFD) – implements a reduced subset of the
protocol stack.

Throughout this document the names of the devices and the acronyms are used interchangeably.

The tree-routing relies on a distributed address assignment mechanism that provides to each potential
parent (ZC and ZRs) a finite sub-block of unique network addresses based on the maximum number of
children, depth and the number of routers in the PAN.

For setting up a Cluster-Tree Wireless Sensor Network (WSN), 3 Network parameters must be defined at
the ZC. The addressing and tree routing mechanisms will operate according to these parameters, outlined
next:

• the maximum number of children (Cm) of a ZR;

• the maximum number of child routers (Rm) of a ZR;

• the depth of the network (Lm).

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

3

2.2 Association Mechanism

The association procedure takes place when a node (ZR or ZED) device wants to join the network. To
proceed with the association the device must scan all radio channels, so that it can select the most suitable
PAN. The association is necessary if the device wants to transmit data in the PAN. As a result of the
association mechanism, the device is assigned with a short address allowing it to transmit in the PAN.

The device associates with the PAN Coordinator, defining its characteristics in the capability
information field of the association request command. Figure 1 presents the association request frame
command format.

Figure 1 – Association request command format [3]

Besides the standard MAC frame fields, the frame has an addressing field, a command frame
identifier field and the capability information of the device.

Figure 2 – Association request capability informati on field format [3]

The capability information field contains the following information:

• Alternate PAN coordinator – 1 if the device is capable of becoming a PAN coordinator (assuming

that the device can be a router);
• Device type – 1 – FFD; 0 –RFD;
• Power source – 1 if the device is main powered;
• Receiver on when idle – 1 if the receiver is on during the inactive period;
• Security – 1 if the device is capable of sending and receiving secured MAC frames with a security

suite;
• Allocate address – 1 – if the device wants a short address; 0 if the device wants to communicate with

the 64 bits extended address.

Upon the reception of the association request command frame, the ZC will process the command and
signal the network layer using the MLME_ASSOCIATE.indication primitive. The network layer will process
the request, by allowing/disallowing the association and assigning a short address (according to the address
assignment functions - refer to section 2.2), and issues the MAC layer with the MLME_ASSOCIATE.request
primitive stating the result of the request. The command is stored in the indirect transmission buffer being
transmitted after a data request from the associating device.

 Figure 3 presents the association response command format, received by the device requesting the
association.

Figure 3 – Association response command format [3]

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

4

 Besides the standard MAC frame fields, the association response command frame contains the
assigned short address (the possible values are presented in figure 4) and the association status stating the
reason of success or failure of the association procedure.

Figure 4 – Association request short address values [3]

Note that the ZigBee Coordinator short address is always 0x0000.

After a successful association there is an update of the MAC PAN Information Base (PIB), the MAC
layer of the device stores the following association parameters:

• a_LogicalChannel – Logical channel of the PAN;
• a_CoordAddrMode – Coordination address mode;
• a_CoordPANId – Coordinator PAN id;
• a_CoordAddress – Coodinator address, depending on the address mode;
• a_CapabilityInformation – Capability information of the device when the association request was

sent.

• a_securityenable – Security enable stating if the device is using security or not.

In the network layer, each device maintains a neighbour table with the information on every device
within its transmission range. In our implementation each device neighbour table contains the following
information:

• PAN_Id – PAN 16 bits short address

• Extended Address – Device 64 bits extended address (if possible);

• Network Address – Device 16 bits short address;

• Device Type – Device Type (Coordinator; Router; End Device);

• Relationship – Relation between the neighbour and the current device (Parent; Child; Sibling;
Other);

• Depth – Optional Field – Depth of the device in the network;

• Permit Joining – Information about the device availability to accept associations;

• Logical Channel – Device Logical Channel;

• Potential Parent – Indication of whether the device has been ruled out as a potential parent due
to a failed join attempt.

2.3 Short Address Assignment

A parent device uses the Cm, Rm, and Lm values to compute a Cskip function defining the size of the
address sub-block that is distributed by each parent depending on its depth (d) in the network. For a given
network depth d, Cskip(d) is calculated as follows:

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

5

−
⋅−−+

=−−⋅+
= −−

 Otherwise ,
1

1
 1 if),1(1

)(1

Rm

RmCmRmCm
RmdLmCm

dCskip dLm

A parent device that has a Cskip(d) value of zero will not be capable of accepting children and shall be
treated as an end device.

A parent device that has a Cskip(d) value greater that zero shall accept devices and shall assign
addresses if possible.

 A parent device will assign an address that is one greater than its own to the first router that
associated. The next associated router will receive an address that will be separated according to the return
value of the Cskip(parent depth) function. The maximum number of associated routers is defined in the
network parameter nwkMaxRouters (Rm).

 Considering a parent node with a depth d and an address of Aparent, the number of child devices n is
between 1 and Cm-Rm.

1 ≤ n ≤ (Cm−Rm)

 The Achild address of the nth child router is calculated according to (n is the number of child
routers):

Achild = Aparent+(n-1)×Cskip(d)+1 , n = 1

Achild = Aparent+(n-1)×Cskip(d) , n > 1

 The Achild address of the nth child end device is calculated according to (n is the number of child
end devices):

Achild = Aparent+Rm×Cskip(d)+n

The next figure presents an example of an address assignment scheme. Note that the network parameters are
the following:

• Maximum depth: 3

• Maximum children: 6

• Maximum routers: 4

Figure 5 – Address assignment scheme example.

Figure 6 presents the PAN Coordinator available addressing scheme. With the above network parameters the
coordinator is allowed to associate 4 routers and 2 end devices in its available address pool.

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

6

Figure 6 – PAN Coordinator addressing scheme (decim al values).

2.4 ZigBee Tree Routing Mechanism

Our current implementation only supports the tree-routing (mesh routing is not supported yet). This
routing mechanism is based on the addressing scheme of the network.

Each device, upon the reception of a data frame, reads the routing information fields (Figure 7) and
checks the destination address.

Figure 7 – Network layer frame format [1]

If the destination address is equal to its own address, the device will signal the upper layer with the
NLDE_DATA.indication primitive along with the frame payload as argument. If the destination is a child of
the device (neighbour table check), the device relays the packet to the appropriate child address. If the
destination address is not a child, the device must check if the address is a descendent using the following
condition, being A the device network address, D the destination address and d the device depth in the
network.

A < D < A + Cskip(d-1)

 The device address of the next hop when route down is given by:

Error! Objects cannot be created from editing field codes.

 If the destination address is not a descendant, the device will relay the packet to its parent.

 Consider Figure 5 and a network with the following parameters: a maximum depth 3; children 6;
routers 4. The Cskip values in the network are presented next:

Depth Cskip(Depth)

0 31

1 7

2 1

If the ZR 0x0002 wants to transmit a message to ZR 0x0028 the tree-routing protocol will behave as follows:

1. ZR 0x0002 creates the data frame and sends it to it parent (0x0001). The most relevant fields of the
data frame are outlined next:

a. MAC destination address – 0x0001;

b. MAC source address – 0x0002;

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

7

c. Network Layer Routing Destination Address – 0x0028;

d. Network Layer Routing Source Address – 0x0002;

2. ZR 0x0001 receives the data frame and realizes that the message in not for him and has to be
relayed. The device checks its neighbour table for the routing destination address trying to find the
destination is one of its child devices. Then, the device checks if the routing destination address is a
descendant by verifying the condition A < D < A + Cskip(d-1) that will result in:

0x0001 < 0x0028 < 0x0001 + 7

Note that the ZR 0x0001 is a depth 1 device in the network. After verifying that the destination is not
a descendant, the ZR 0x0001 will route the data frame to it parent, the ZC 0x0000.

The most relevant fields of the data frame are outlined next:

a. MAC destination address – 0x0000;

b. MAC source address – 0x0001;

c. Network Layer Routing Destination Address – 0x0028;

d. Network Layer Routing Source Address – 0x0002;

3. The ZC 0x0000 receives the data frame and will verify if the routing destination address exists in its
neighbour table. After realizing that the destination device is not a neighbour the ZC, that is on top
of the tree and cannot route up, the next hop address is calculated as follows:

31
31

)100000(00280
100000 ×

 +−++= xx
xN

The next hop address results in N = 32 (decimal) = 0x0020 (N is the address of the next hop).

The most relevant fields of the data frame are outlined next:

a. MAC destination address – 0x0020;

b. MAC source address – 0x0000;

c. Network Layer Routing Destination Address – 0x0028;

d. Network Layer Routing Source Address – 0x0002;

4. The ZR 0x0020 receives the data frame and checks its neighbour table for the routing destination
address. After verifying that the address is its neighbour, the message is routed to it. The next hop is
assigned with the short address present in the selected neighbour table entry.

The most relevant fields of the data frame are outlined next:

a. MAC destination address – 0x0028;

b. MAC source address – 0x0020;

c. Network Layer Routing Destination Address – 0x0028;

d. Network Layer Routing Source Address – 0x0002;

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

8

3 Network Layer Implementation

3.1 Overview

The ZigBee Network layer is implemented in TinyOS/nesC[5,6] using our own implementation of the
IEEE 802.15.4 protocol.

Figure 9 illustrates the TinyOS implementation diagram, respecting the layered structure presented in
Figure 8. The Physical, Data Link and Network layers (gray modules in Figure 9) are implemented by us.
The hardware drivers of the CC2420 radio transceiver are already provided by TinyOS.

Figure 8 – TinyOS implementation file structure

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

9

Figure 9 - TinyOS implementation diagram

Figure 9 depicts the relations between different components of the IEEE 802.15.4/Zigbee protocol
stack implementation. Note that some components used in our implementation are already part of the
TinyOS operating system, namely the hardware components (e.g. the HPL<…>.nc and the MSP430<…>.nc
modules).

In this implementation, there is no direct interaction with the hardware, in fact, TinyOS already
provides hardware drivers forging a hardware abstraction layer used by the Phy component. In Figure 9,
observe that the components highlighted in white are hardware components already provided by the TinyOS
operating system.

3.2 Network Layer Reference Model
The next figure presents the network layer reference model.

Figure 10 – Network layer reference model

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

10

 The network layer provides two service entities. The Network Layer Data Entity (NLDE) provides a
data service for allowing the transmission of data frames and topology specific routing. The Network Layer
Management Entity (NLME) provides a management service allowing the application interface layer to
interact with the network layer stack parameter. The management services provided are the following:

• Configuring a new device – Start the device operation as a ZigBee Coordinator/Router/End Device;

• Starting a Network – Establish a new network with the desired parameters;

• Joining and leaving a network – Association/disassociation procedures;

• Addressing – The ability for Coordinator or Routers to correctly assign addresses;

• Neighbour discovery – Maintenance of a neighbour table of all the devices one-hop away.

• Reception Control – Control the MAC layer operation mode for data reception.

• Route discovery – The ability to store a routing table. (not supported in our current implementation)

 The Network Layer Data Entity Service Access Point (NLDE-SAP) comprehends the data transfer
between the network layer and the application support sublayer (APS). The file included in the interfaces for
the NLDE-SAP is the following and is located under the contrib.hurray.tos.interfaces.ZigBee.nwk directory:

• NLDE-DATA [2 pag 247] – exchange data frames between the NWK and the APS

The next table summarizes the primitives supported by the NLDE-SAP [2 pag 247]

Interface Name Request Indication Response Confirm

NLDE-DATA X X X
Table 1 - NLDE-SAP primitives

 The Network Layer Management Entity Service Access Point (NLME-SAP) comprehends the
exchange of management commands between the NWK layer and the APS. The files included in the
interfaces for the NLDE-SAP are the following and are located under
contrib.hurray.tos.interfaces.ZigBee.nwk directory:

• NLME_NETWORK_DISCOVERY [3 pag. 254] – Used by the APS to perform a discovery of
networks operating within the device personal operating space (POS);

• NLME_NETWORK_FORMATION [3 pag. 257] – Used by the APS of a ZigBee Coordinator to
start a network and to change the superframe configuration

• NLME_PERMIT_JOINING [3 pag.262] – Used by the APS of a ZigBee Coordinator or Router to
allow/deny the acceptance of new associations.

• NLME_START_ROUTER [3 pag.263] – Used by the APS of a ZigBee Router to start broadcasting
beacon frames and to change the superframe configuration

• NLME_JOIN [3 pag. 265] – Used by the APS of a device request a join procedure (or association) to
a network.

• NLME_DIRECT_JOIN [3 pag. 273] – Used by the APS of a ZigBee Coordinator or Router to
request to directly join another device to its network

• NLME_LEAVE [3 pag. 275] – Used by the APS to request or inform a disassociation to the
network.

• NLME_RESET [3 pag. 279] – Used to reset the NWK layer parameters;

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

11

• NLME_SYNC [3 pag. 283] – Allows the notification of the APS of the loss of synchronization to
the device parent.

• NLME_GET [3 pag.287] – Used by the APS to read the values of an attribute of the Network Layer
Information Base;

• NLME_SET [3 pag. 288] Used by the APS to write the values of an attribute of the Network Layer
Information Base;

 The next table summarizes the primitives supported by the NLME-SAP [3 pag 253]

Interface Name Request Indication Response Confirm

NLME_NETWORK_DISCOVERY X X

NLME_NETWORK_FORMATION X X

NLME_PERMIT_JOINING X X

NLME_START_ROUTER X X

NLME_JOIN X X X

NLME_DIRECT_JOIN X X

NLME_LEAVE X X X

NLME_RESET X X X

NLME_SYNC X X

NLME_GET X X

NLME_SET X X
Table 2 - NLME-SAP primitives

3.3 Components NWK and NWKM

 The Network layer is implemented in two files. There file are located under
contrib.hurray.tos.lib.nwk

NWK.nc – Component wiring the interfaces to the implementation on the component NWKM

NWKM.nc – Component that implements the Network layer functions that will be provided to the upper
layer.

3.4 Component NWK

3.4.1 Provided Interfaces

• NLME_NETWORK_DISCOVERY

• NLME_NETWORK_FORMATION

• NLME_PERMIT_JOINING

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

12

• NLME_START_ROUTER

• NLME_JOIN

• NLME_DIRECT_JOIN

• NLME_LEAVE

• NLME_RESET

• NLME_SYNC

• NLME_GET

• NLME_SET

3.4.2 Component Graph

The network layer was developed as a TinyOS component (NWK) and each SAP as an interface. The
MAC component provides the NWK the MAC SAP interfaces and the NWK provides the upper layer with
the NWK SAP interfaces. Figure 11 depicts the component diagram that connects the NWK module with the
MAC module (this diagram was generated by the nesdoc tool provided by TinyOS [7]).

Figure 11 – TinyOS NWK component diagram

 Only a subset of the network layer was developed. The functionalities implemented are the
following:

• Network association mechanisms – tree association scheme;

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

13

• Neighbour table – information about the parent node and the associated child devices only;

• NWK IB – Network layer information base;

• Tree routing.

 The network discovery functions were implemented statically because, in our current
implementation of the IEEE 802.15.4, the channel scan mechanism is not implemented. The network
parameters were defined as constants.

3.5 Component NWKM

3.5.1 Required Interfaces
• MLME_START [3 pag. 100] – Used for the coordinator to start sending beacons or use a new

superframe configuration.
• MLME_ASSOCIATE [3 pag. 64] – Used to create an association request directed to the coordinator.
• MLME_DISASSOCIATE [3 pag. 71] – Used to create a disassociation requent directed to the

coordinator.
• MLME_SYNC [3 pag. 104] – Used to enable the MAC layer to start synchronizing the coordinator

by always keep track of the beacon.
• MLME_SYNC_LOSS [3 pag. 105] – Used by the MAC layer to inform the upper layer about the

loss of synchronization with a coordinator.
• MLME_SCAN [3 pag. 92] - Implements the channel scan mechanist in order to inform the upper

layer about the energy detection on each channel.
• MLME_RESET [3 pag. 88] – Used to request a reset operation in the MAC layer.
• MLME_BEACON_NOTIFY [3 pag. 75] – Used by the MAC layer to inform the upper layer about

the PAN descriptor and pending addresses contained in the beacon received.
• MLME_COMM_STATUS [3 pag. 96] – Used by the MAC layer to inform the upper layer about the

communication status.
• MLME_SET [3 pag. 98] - Used to write in the attributes of the MAC PAN Information Base.
• MLME_GET [3 pag. 78] – Used to read the attributes of the MAC PAN Information Base.
• MLME_GTS [3 pag.79] – Used to create a GTS allocation request directed to the coordinator. This

interface also informs the MAC upper layer about the status of the allocation.
• MCPS_DATA [3 pag. 56] – Implement the data exchange between the MAC layer and the next

upper layer.
• MCPS_PURGE [3 pag. 61] – Used to purge a data frame from the transaction queue.

3.5.2 Provided Interfaces

• NLME_NETWORK_DISCOVERY

• NLME_NETWORK_FORMATION

• NLME_PERMIT_JOINING

• NLME_START_ROUTER

• NLME_JOIN

• NLME_DIRECT_JOIN

• NLME_LEAVE

• NLME_RESET

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

14

• NLME_SYNC

• NLME_GET

• NLME_SET

3.5.3 Variables

• nwkIB nwk_IB – Structure used to store the NWK PAN informations. The attributes contain in this
structure can be accesses by the upper layers thought the NLME-GET and NLME-SET interface
primitives. The structure definition is located in the file nwk_const.h located under the
contrib.hurray.tos.lib.nwk.

• uint8_t device_type – Variable used to define the device type in the network layers. This can assume
the values of COORDINATOR, ROUTER or END DEVICE;

• neighbortableentry neighbortable[7] – Neighbour table list that will contain all the neighbours of the
device. Each element on this list is defined as a neighbortableentry. The structure definition is
located in the file nwk_const.h located under the contrib.hurray.tos.lib.nwk.

• uint8_t neighbour_count – Number of elements in the neighbour table.

• uint8_t parent – Index of the parent device in the neighbour table.

• uint16_t networkaddress – Short address of the device;

• uint8_t depth – Depth of the device in the tree.

• uint8_t cskip – Value of the cskip function used in the address assignement by the ZigBee
Coordinator and Routers.

• uint8_t cskip_routing - Value of the cskip function used and in the tree-routing protocol by the
ZigBee Coordinator and Routers.

• uint8_t parent_index

• uint16_t panid – PAN id of the network.

• uint8_t beaconorder – Beacon order that the ZigBee Coordinator and Routers is using.

• uint8_t superframeorder – Superframe order that the ZigBee Coordinator and Routers is using.

• uint16_t next_child_router_address – The short address of the next child router device that will
request an association.

• uint8_t number_child_router – Number of child routers currently associated.

• uint8_t number_child_end_devices – Number of child end devices currently associated.

• uint8_t joined – Boolean variable defining if the device in joined to a network or not.

• uint8_t sync_loss – Boolean variable defining if the device has lost synchronization to its parent.

3.5.4 Function description

• void init_nwkIB(void) - Function that initialized the NWK PAN Information base to its default
values.

• uint8_t check_neighbortableentry(uint8_t addrmode, uint32_t Extended_Address0, uint32_t
Extended_Address1) - Function used to search in the neighbour table (nwk_IB) for a device. This
function takes as arguments an extended address or a short address. This function returns the index
in the neighbour table list if the device was found, otherwise it returns zero.

• void add_neighbortableentry(uint16_t PAN_Id, uint32_t Extended_Address0, uint32_t
Extended_Address1, uint32_t Network_Address, uint8_t Device_Type, uint8_t Relationship) -
Function used to add a new element to the neighbour table.

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

15

• void update_neighbortableentry(uint16_t PAN_Id, uint32_t Extended_Address0, uint32_t
Extended_Address1, uint32_t Network_Address, uint8_t Device_Type, uint8_t Relationship) –
Function used to update an element in the neighbour table.

• uint8_t find_suitable_parent(void) – Function used to find a suitable parent in the neighbour table.
Currently this function finds the first device where the relationship field contains the value
NEIGHBOR_IS_PARENT. This function returns the index in the neighbour table list if the device
was found, otherwise it returns zero.

• uint16_t Cskip(uint8_t d) - Function used to compute the Cskip value.

• uint16_t nexthopaddress(uint16_t destinationaddress, uint8_t d) - Function used to calculate the next
hop address of the appropriate child if route down is required.

• void list_neighbourtable(void) – Debug function that list all the elements in the neighbour table.

3.6 Implementation of the protocol functionalities

 This section presents a brief explanation of the implemented network layer mechanisms. It starts
with the Time Division Beacon Scheduling Mechanism that is necessary in the construction of the cluster-
tree because it provides an effective way to schedule the beacon transmissions of all the ZigBee Routers.
Other mechanisms like the joining to a network, the formation of a network and the routing are briefly
explained.

3.6.1 The Time Division Beacon Scheduling Mechanism

The Time Division Beacon Scheduling Mechanism does not introduce relevant changes in the protocol
specification. It relies on a negotiation mechanism based on command frames embedded in data frames.

When implementing this mechanism we assume the following:

1. The ZigBee network layer supports the tree-routing mechanism, thus and the network addresses
of the devices are assigned accordingly.

2. The ZigBee Coordinator is the first node broadcasting beacons in the network.

3. The ZigBee Routers start to send beacons only after a successful negotiation.

4. The same Beacon Interval (BI) is used by every router.

For the negotiation of the beacon transmission, each ZR must complete the following steps:

1. The ZR must successful associate with its parent and temporarily behaves as a ZigBee End
Device (ZED), without sending beacons.

2. The ZR initiates the negotiation protocol by sending a “START SENDING BEACON” request
command.

3. The ZC receives the request and determines the schedule of the ZR.

4. After the schedule process, the ZC replies by sending a “START SENDING BEACON”
response command with the status of the negotiation (SUCCESS or FAIL) and the transmission
offset value to the requesting ZR

5. The ZR receives the command from the ZC and if the negotiation its successful it starts sending
beacon in the defined offset related to its parent.

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

16

In order to implement this mechanism, some changes are needed in the Network and Mac layer
Service Access Point (SAP) primitives. Thus, is necessary to add a StartTime argument in the MLME-
START.request primitive, as already proposed in the ZigBee standard [1, pag 245]. This primitive is used by
the upper layer to request the MAC layer to start sending beacons to or use a new superframe configuration.
The new format of the primitive is as follows:

MLME-START.request (

PANID,

 LogicalChannel,

 BeaconOrder,

 SuperframeOrder,

 PANCoordinator,

 BatteryLifeExtention,

 CoordRealignment,

 SecurityEnable,

 StartTime)

The StartTime parameter will be used as a transmission offset referring to the ZigBee Router (ZR)
parent. In the ZC the value of this parameter is 0.

The StartTime parameter size is 3 bytes and is specified in symbols.

In the NLME-START-ROUTER.request primitive there is also the need to add a StartTime
parameter. The new format of the primitive is as follows:

NLME-START-ROUTER.request(

 BeaconOrder,

 SuperframeOrder,

 BatteryLifeExtension,

 StartTime)

The primitive is requested by the Network upper layer of the ZR to start the beacon transmission.
The StartTime parameter is obtained after a successful negotiation with the ZC for beacon broadcasting.
Note that, in case of an unsuccessful negotiation the ZR will not be allowed to send beacons, therefore can
only act as a ZED.

After a successful negotiation of the beacon transmission, the ZR will have two active periods: its
own (the superframe duration) and the parent’s superframe duration. In its own active period the ZR is
allowed to transmit frames to its associated devices or relay frames to the descendant devices in the tree. The
frames destined upstream are sent during its parent’s active period. To accomplish this behaviour there is a
need to implement a different buffer mechanism for each message flow - the downstream to the device
descendants and the upstream to the device ascendants.

The buffer mechanism is implemented in the MAC layer that uses the downstream buffer or the
upstream buffer depending of the transmission options parameter of the MCPS_DATA.request primitive.
The transmit options or TxOptions parameter, last argument of the primitive, define the transmission options
for the data frame, allowing the frame to be sent in the GTS or during the CAP period.This parameter will
also define if the transmission will use the upstream or the downstream buffer.

 As defined in the IEEE 802.15.4 standard [3] the transmission options parameters has the following format:

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

17

Figure 12 – MCPS_DATA.request TxOptions format [3]

In order to inform the MAC layer of which buffer to use, we have changed the transmission format including
an upstream parameter. The Time Division Beacon Scheduling transmission option parameter has the
following format:

Figure 13 – Time Division Beacon Scheduling MCPS_DA TA.request TxOptions format

During the ZR superframe all the frames that need to be transmitted to its parent will be stored in the
upstream buffer. When the device enters the parent superframe, it tries to transmit the messages.

To enable the use of the 2 message buffers the device must wake up in the parent’s superframe. This is
accomplished by adding two new timer events to the MAC layer. One is triggered at the beginning of the
parent’s superframe and turns on the transceiver in receive mode and another at the end turning the
transceiver off.

 In our current implementation we did not include the implementation of the scheduling algorithm
yet. Instead, the application running on the ZC has the offset values pre-established for each node address
that requests a negotiation for a time window slot.

 The negotiation of the beacon transmission is performed thought a simple protocol that uses the data
frames payload with a predefined format. The format of the negotiation fields is the following:

Figure 14 – Negotiation Fields

• Negotiation type – Indicates the type of the negotiation command. This field can have the following
values; 1 for a negotiation request, 2 for a negotiation accept and 3 for a negotiation deny;

• Beacon Order – Indicates the beacon order of the ZR device;

• Superframe Order – Indicates the superframe order of the ZR device;

• Transmission Offset – Indicates the transmission offset schedule by the ZC in a negotiation accept
command.

In the negotiation request, the Beacon Order and Superframe Order fields indicate the intended ZR
superframe configuration. In the negotiation response the configuration may not be the same as the
requested, instead, the ZC can assign a different configuration according to its scheduling.

The next diagram presents the sequence of Network layer events from the association of the ZR (A) until the
beacon transmission after a successful negotiation (B).

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

18

Figure 15 – Negotiation diagram

3.6.2 Creating a new network as a ZigBee Coordinator

 The creation of a new network is done by issuing the NLME_NETWORK_FORMATION.request.
When this primitive is requested the ZigBee router will perform the following actions:

1. Set the NWK variable device_type to COORDINATOR

2. Set the MAC layer PAN information (e.g. beacon order, superframe duration, maximum beacon
length, PAN ID, short address);

3. Calculate the cskip value for the address assignment and for the routing. This values are calculated
only in this procedure to avoid the computation during operational behaviour of the mechanisms.

4. Initialize the address assignment variables; The address assignment will include

5. Call the MLME_START.request primitive to start broadcasting beacons.

3.6.3 Start Sending beacons as a ZigBee Router

 Each ZigBee router before starting to broadcast beacons must join the network. As this
implementation uses the Time Division Beacon Scheduling Mechanism the device will behave as a ZED and
will negotiate with the ZC for beacon broadcasting. Is the broadcast is successful the device will call the

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

19

NLME_START_ROUTER.request primitive that will perform the same operations as the ZC when starting a
new network except when the device issues the MLME_START.request primitive to the MAC layer it will
include the StartTime argument with the values received during the negotiation. This value will be used by
the MAC layer to calculate the beacon transmission offset after the reception of the devices parent beacon.

3.6.4 Joining a Network

 The join procedure is necessary for every ZigBee Router and ZigBee End Device. Only the ZC and
ZRs are allowed to associate devices. The join procedure in the network layer, as explained in section 2.3 of
this technical report, is based of a distributed address scheme.

 When a device receives an association request command frame the MAC layer issues the
MLME_ASSOCIATE.indication primitive to the network layer. Figure 16 depicts a flow chart showing the
association procedure of a parent device.

Figure 16 - MLME_ASSOCIATE.indication flow chart

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

20

 In the MLME_ASSOCIATE.indication primitive the parent will first check for associating device
address in the neighbour table, verifying if it is a reassociation and in that case the association is successful
and the parent generates and association response command frame with the already stored information. If the
device does not exist, the parent must verify what type of device is trying the association, if it’s a router or an
end device. The type of device will define the address that must be assigned. Nevertheless, for a successful
association the variable nwk_IB.nwkAvailableAddresses in the NWK PAN Information base must be grater
than zero.

 If the associating device is a router, the parent will add its information to the neighbour table and
send the association response command with the short address previously calculated in the
next_child_router_address variable. Then, the parent updates the future child router address by calculating
the next formulation: next_child_router_address = networkaddress + ((number_child_router-1) * cskip) +1
followed by an increment of the number of child routers associated (number_child_router). Note that the
cskip parameter is calculated in the initialization of the node and the networkaddress variable is the parents
device short address.

 If the association device is an end device, the parent will also add its information to the neighbour
table and generate the association respond command with the short address previously calculated in the
nwk_IB.nwkNextAddress variable. After the response generation, to nwk_IB.nwkNextAddress variable will be
added the nwk_IB.nwkAddressIncrement variable followed by an increment of the number of child end
devices.

 There is a need to differentiate the type of associating device and separately count their numbers and
their assigned addresses to comply with the address schemes. This address distribution will enable the
construction of the cluster-tree topology

3.6.5 Cluster-tree Routing

 The cluster-tree routing procedure, as briefly explained in section 2.4 of this technical report, is
based on the addresses of the devices. When a MAC layer of a device receives a data frame it issues the
MCPS_DATA.indication primitive to the NWK layer. Figure 17 depicts a flow chart showing the procedures
when the NWK receives a data frame.

Figure 17 - MCPS_DATA.indication flow chart

 The NWK layer, upon the reception of a data frame will first verify the routing destination field
equals its own short address and if true it will pass the data payload to the upper layer, by issuing the

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

21

NLDE_DATA.indication primitive. If the routing destination address is not for it self, the device must
calculate the next hop destination address. In the case of a ZigBee Coordinator, if the destination of the data
frame is its own child, after checking in the neighbour table, it will assign the next hop with the short address
present in the neighbour tables of the respective child, otherwise it need to calculate the next hop by applying
the cluster-tree routing formula for that effect (shown in section 2.4). In all the cases the routing is always
downstream because the ZC does not have any parent.

 In the case of a ZigBee Routers there is an initial verification if the destination is up or down in the
tree. This verification is done by applying the following conditions:

networkaddress < routing_fields_ptr->destination_address

AND

routing_fields_ptr->destination_address < (networkaddress + cskip_routing)

 If the above conditions are true then the routing is down the tree. The device checks it the destination
is a child device (by consulting its neighbour table) and if not it will calculate the next hop by applying the
cluster-tree routing formula for that effect (shown in section 2.4).

 If the conditions are false the device just routes up the network to its parent.

 After the next hop decision the message is transmitted by issuing the MCPS_DATA.request primitive
to the MAC layer.

3.6.6 Data Transmission

 The data transmission procedure is similar to the routing mechanism. After the creation of the frame
the device must assign a destination address to the routing fields. Depending on the type of device, if its an
end device the only option is to route the its parent (upstream in the cluster-tree network), otherwise if the
device is the ZigBee Coordinator or a ZigBee Router, it must check if the destination is a child device or
must calculate the next hop by applying the cluster-tree routing formula for that effect (shown in section 2.4).
Figure 18 depicts a flow chart showing the procedures the NWK upper layer requests a data transmission.

Figure 18 - NLDE_DATA request flow chart

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

22

4 Auxiliary Files (Under contrib.hurray.tos.lib.nwk)

nwk_const.h

 This file contains data structures definition used and protocol constants definition related with the
NWK layer along with auxiliary constants.

 The NWK protocol constants defined are the described in the next table [1 pag. 315].

Constant Value Description

nwkcCoordinatorCapable Set at build
time

A Boolean flag indicating whether the device is capable of
becoming the ZigBee Coordinator (0x01 indicates the device
is capable)

nwkcDefaultSecurityLevel ENC-MIC-
64

The default security level to be used.

nwkcDiscoveryRetryLimit 0x03 The maximum number of times a route discovery will be
retried.

nwkcMaxDepth 0x0f The maximum depth of the device

nwkcMinHeaderOverhead 0x08 The minimum number of octets added by the NWK layer to a
NSDU

nwkcProtocolVersion 0x02 The version of the ZigBee NWK protocol in the device

nwkcWaitBeforeValidation 0x500 Time duration in milliseconds, on the originator of a multicast
route request, between receiving a route reply and sending a
message to validate the route

nwkcRepairThreshold 0x03 Maximum number of allowed communication errors after
which the route repair mechanism is initiated

nwkcRouteDiscoveryTime 0x2710 Time duration in milliseconds until a route discovery expires

nwkcMaxBroadcastJitter 0x40 The maximum broadcast jitter time measured in milliseconds.

nwkcInitialRREQRetries 0x03 The number of times the first broadcast transmission of a
route request command frame is retried.

nwkcRREQRetries 0x02 The number of times the broadcast transmission of a route
request command frame is retried on relay by an intermediate
ZigBee router or ZigBee coordinator

nwkcRREQRetryInterval 0xfe The number of milliseconds between retries of a broadcast
route request command frame

nwkcMinRREQJitter 0x01 The minimum jitter, in 2 millisecond slots, for broadcast
retransmission of a route request command frame

nwkcMaxRREQJitter 0x40 The maximum jitter, in 2 millisecond slots, for broadcast
retransmission of a route request command frame

Table 3 - ZigBee Network layer constant description

The next table describes auxiliary constants used in the MAC layer.

Constant Value Description

TYPE_DEVICE Defines the type of device (COORDINATOR; ROUTER
or ENDDEVICE)

DEVICE_DEPTH Defines the device current depth in the network

LOGICAL_CHANNEL Defines de logical radio channel where the device is
operating

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

23

PANID The 16 short address of the PAN.

AVAILABLEADDRESSES 0x04 Number of available addresses for nodes association.

ADDRESSINCREMENT 0x0001 Address increment value

MAXCHILDREN 0x06 Maximum number of child devices allowed for the ZC and
each ZR:

MAXDEPTH 0x04 Maximum depth in the cluster-tree network;

MAXROUTERS 0x04 Maximum number of child routers allowed for the ZC and
each ZR:

BEACON_ORDER 8 Beacon order;

SUPERFRAME_ORDER 4 Superframe order;

D<x>_PAN_EXT0

D<x>_PAN_EXT1

 Static definition of the 32 bit extended address of the
device parent

D<x>_PAN_SHORT Static definition of the 16 bit short address of the device
parent

NEIGHBOUR_TABLE_SIZE 7 Number of entries in the neighbour table

SCHEDULING_REQUEST 0x01 Negotiation mechanism message type.

SCHEDULING_ACCEPT 0x02 Negotiation mechanism message type.

SCHEDULING_DENY 0x03 Negotiation mechanism message type.

Table 4 - NWK layer auxiliary constants description .

The next table describes the structures defined in this file.

Structure Name Attributes Description

nwkIB uint8_t nwkSequenceNumber;

uint8_t nwkPassiveAckTimeout;

uint8_t nwkMaxBroadcastRetries;

uint8_t nwkMaxChildren;

uint8_t nwkMaxDepth;

uint8_t nwkMaxRouters;

uint8_t nwkNetworkBroadcastDeliveryTime;

uint8_t nwkReportConstantCost;

uint8_t nwkRouteDiscoveryRetriesPermitted;

uint8_t nwkSymLink;

uint8_t nwkCapabilityInformation;

uint8_t nwkUseTreeAddrAlloc;

uint8_t nwkUseTreeRouting;

uint16_t nwkNextAddress;

uint16_t nwkAvailableAddresses;

uint16_t nwkAddressIncrement;

uint16_t nwkTransactionPersistenceTime;

NWK PAN Information base
[1 pag 317]

neighbortableentry uint16_t PAN_Id;

uint32_t Extended_Address0;

Neighbour table entry [1 pag
342]

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

24

uint32_t Extended_Address1;

uint16_t Network_Address;

uint8_t Device_Type;

uint8_t Relationship;

uint8_t Depth;

uint8_t Permit_Joining;

uint8_t Logical_Channel;

uint8_t Potential_Parent;

networkdescriptor uint16_t PANId;

uint8_t LogicalChannel;

uint8_t StackProfile;

uint8_t ZigBeeVersion;

uint8_t BeaconOrder;

uint8_t SuperframeOrder;

uint8_t PermitJoining;

PAN network descriptor

beacon_scheduling uint8_t request_type;

uint8_t beacon_order;

uint8_t superframe_order;

uint8_t transmission_offset[3];

Negotiation for beacon
transmission frame structure.

Table 5 - Structure definitions on the nwk_const.h file

nwk_enumerations.h

This file contains the enumeration values used in the NWK layer. The following tables describe the
enumerations and their usage [1 pag. 243].

Enumeration Value Description

NWK_SUCCESS 0x00 A request has been executed successfully

NWK_INVALID_PARAMETER 0xc1 An invalid or out-of-range parameter has been passed to a
primitive from the next higher layer

NWK_INVALID_REQUEST 0xc2 The next higher layer has issued a request that is invalid or
cannot be executed given the current state of the NWK layer

NWK_NOT_PERMITTED 0xc3 An NLME-JOIN.request has been disallowed

NWK_STARTUP_FAILURE 0xc4 An NLME-NETWORK-FORMATION.request has failed to
start a network

NWK_ALREADY_PRESENT 0xc5 A device with the address supplied to the NLMEDIRECT-
JOIN.request is already present in the neighbor table of the
device on which the NLMEDIRECT- JOIN.request was issued

NWK_SYNC_FAILURE 0xc6 Used to indicate that an NLME-SYNC.request has failed at the
MAC layer

NWK_NEIGHBOR_TABLE_FULL 0xc7 An NLME-JOIN-DIRECTLY.request has failed because there
is no more room in the neighbour table

NWK_UNKNOWN_DEVICE 0xc8 An NLME-LEAVE.request has failed because the device
addressed in the parameter list is not in the neighbor table of the

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

25

issuing device

NWK_UNSUPPORTED_ATTRIBUT
E

0xc9 An NLME-GET.request or NLME-SET.request has been issued
with an unknown attribute identifier

NWK_NO_NETWORKS 0xca An NLME-JOIN.request has been issued in an environment
where no networks are detectable

NWK_LEAVE_UNCONFIRMED 0xcb A device failed to confirm its departure from the network

NWK_MAX_FRM_CNTR 0xcc Security processing has been attempted on an outgoing frame,
and has failed because the frame counter has reached its
maximum value

NWK_NO_KEY 0xcd Security processing has been attempted on an outgoing frame,
and has failed because no key was available with which to
process it

NWK_BAD_CCM_OUTPUT 0xce Security processing has been attempted on an outgoing frame,
and has failed because security engine produced erroneous
output

Table 6 - General NWK enumeration description.

The next table enumerates the device types in ZigBee networks [1 pag 342].

Enumeration Value Description

COORDINATOR 0x00 ZigBee Coordianator

ROUTER 0x01 ZigBee Router

END_DEVICE 0x02 ZigBee End Device

Table 7 – Device Types enumeration.

The next table enumerates the possible device relationship [1 pag. 342].

Enumeration Value Description

NEIGHBOR_IS_PARENT 0x00 The neighbour device is the parent

NEIGHBOR_IS_CHILD 0x01 The neighbour device is a child

NEIGHBOR_IS_SIBLING 0x02 The neighbour device is a sibling

NEIGHBOR_IS_NON 0x03 The neighbour device has no relationship

NEIGHBOR_IS_PREVIOUS_CHILD 0x04 The neighbour device was a child

Table 8 – Neighbour device relationship enumeration s

 NWK PIB attributes enumerations description table used in the NLME_GET and NLME_SET
primitives [1 pag. 317].

Enumeration Value Description

NWKSEQUENCENUMBER 0x81

NWKPASSIVEACKTIMEOUT 0x82

NWKMAXBROADCASTRETRIES 0x83

NWKMAXCHILDREN 0x84

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

26

NWKMAXDEPTH 0x85

NWKMAXROUTERS 0x86

NWKMETWORKBROADCASTDEL
IVERYTIME

0x88

NWKREPORTCONSTANTCOST 0x89

NWKROUTEDISCOVERYRETRIES
PERMITED

0x8a

NWKSYMLINK 0x8e

NWKCAPABILITYINFORMATION 0x8f

NWKUSETREEADDRALLOC 0x90

NWKUSETREEROUTING 0x91

NWKNEXTADDRESS 0x92

NWKAVAILABLEADDRESSES 0x93

NWKADDRESSINCREMENT 0x94

NWKTRANSACTIONPERSISTENC
ETIME

0x95

Table 9 - NWK GET/SET reference PIB enumerations de scription.

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

27

5 Example Application

 The sample application used to test the NWK implementation is the Test_APL, located under the
contrib.hurray.apps.Test_APL.

 This application uses the interfaces provided by the NWKM component and currently is customized
to use with the TELOSB mote due to the interfacing with the mote user button. The TELOSB mote needs to
“warmup” before entering into normal operational behaviour, so, the user button is used to start the mote
operation either by starting to send beacons, in the case of the ZigBee Coordinator, or to associate to a
network in the case of ZigBee Routers or End Devices.

 In order to test the cluster-tree approach we have forced the association to a specific parent device by
assigning some static parameters to the device. These parameters are located in the nwk_const.h file under
the contrib.hurray.tos.lib.nwk and are the following:

• TYPE_DEVICE – selecting the role of the device in the network;

• DEVICE_DEPTH – selecting the depth of the device in the network. This parameter in be used in
computing the cskip functions used for the address assignment and for the tree-routing. This value
will also be used to select the appropriate parent selected for the association.

Depending of the selected depth the device will select the statically defined parent. The parent values are
assigned in the NLME_NETWORK_DISCOVERY.request primitive.The parents addresses (short address and
extended address) are defined in the following variables:

Activated when the device depth is 0x01

• D1_PAN_EXT0 0x00000001

• D1_PAN_EXT1 0x00000001

• D1_PAN_SHORT 0x0000

Activated when the device depth is 0x02

• D2_PAN_EXT0 0x00000002

• D2_PAN_EXT1 0x00000002

• D2_PAN_SHORT 0x0001

Activated when the device depth is 0x03

• D3_PAN_EXT0 0x00000003

• D3_PAN_EXT1 0x00000003

• D3_PAN_SHORT 0x0002

Activated when the device depth is 0x04

• D4_PAN_EXT0 0x00000006

• D4_PAN_EXT1 0x00000006

• D4_PAN_SHORT 0x0022

 In order for a cluster-tree to work properly there is a need to schedule the beacon frames. This is
done by assigning a time offset to each routers (refer to section 3.6.1). The device assigned as a ZigBee
Coordinator will accept the negotiation requests for beacon transmission. Upon the reception of these
messages the ZC will execute the process_beacon_scheduling function that already has an offset list for each
device (based on the short address). This function can be replaced with a scheduling algorithm.

Technical Report #TR-070510 Implementation of the ZigBee Network Layer (in nesC/TinyOS)

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

28

6 References

[1] ZigBee-Alliance, "ZigBee specification," http://www.ZigBee.org/, 2006.

[2] Anis KOUBAA, Andre CUNHA, Mário ALVES, “A Time Division Beacon Scheduling Mechanism for
IEEE 802.15.4/Zigbee Cluster-Tree Wireless Sensor Networks”, to be presented in Euromicro Conference on
Real-Time Systems (ECRTS 2007), Pisa(Italy), July 2007

[3] IEEE 802.15.4 Standard-2003, "Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)", IEEE-SA Standards
Board, 2003.

[4] Andre Cunha, Mario Alves, “An IEEE 802.15.4 protocol implementation(in nesC/TinyOS): Reference
Guide v1.2”, IPP-HURRAY Technical Report, HURRAY-TR-061106, Nov 2006

[5] The OPEN ZigBee implementation - www.open-zb.net

[6] David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer, and David Culler, “The nesC
language: A holistic approach to network embedded systems”, in PLDI’03.

[7] www.tinyos.net

[8] Crossbow Technologies INC. http://www.xbow.com

[9] ATmega128L 8-bit AVR Microntroller Datasheet, Atmel ref: 2467MAVR-11/04, http://www.atmel.com

[10] Chipcon, SmartRF CC2420 Datasheet (rev 1.3), 2005.http://www.chipcon.com

[11] Chipcon, “Chipcon Packet Sniffer for IEEE 802.15.4”, 2006

[12]Daintree Networks, "Sensor Network Analyser, www.daintree.net," 2006

