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Abstract 
Time-sensitive Wireless Sensor Network (WSN) applications require finite delay bounds in critical 
situations. This paper provides a methodology for the modeling and the worst-case dimensioning of cluster-
tree WSNs. We provide a fine model of the worst-case cluster-tree topology characterized by its depth, the 
maximum number of child routers and the maximum number of child nodes for each parent router. Using 
Network Calculus, we derive “plug-and-play” expressions for the end-to-end delay bounds, buffering and 
bandwidth requirements as a function of the WSN cluster-tree characteristics and traffic specifications. The 
cluster-tree topology has been adopted by many cluster-based solutions for WSNs. We demonstrate how to 
apply our general results for dimensioning IEEE 802.15.4/Zigbee cluster-tree WSNs. We believe that this 
paper shows the fundamental performance limits of cluster-tree wireless sensor networks by the provision of 
a simple and effective methodology for the design of such WSNs. 
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Abstract 
Time-sensitive Wireless Sensor Network (WSN) applications 
require finite delay bounds in critical situations. This paper 
provides a methodology for the modeling and the worst-case 
dimensioning of cluster-tree WSNs. We provide a fine model of 
the worst-case cluster-tree topology characterized by its depth, 
the maximum number of child routers and the maximum 
number of child nodes for each parent router. Using Network 
Calculus, we derive “plug-and-play” expressions for the end-
to-end delay bounds, buffering and bandwidth requirements as 
a function of the WSN cluster-tree characteristics and traffic 
specifications. The cluster-tree topology has been adopted by 
many cluster-based solutions for WSNs. We demonstrate how 
to apply our general results for dimensioning IEEE 
802.15.4/Zigbee cluster-tree WSNs. We believe that this paper 
shows the fundamental performance limits of cluster-tree 
wireless sensor networks by the provision of a simple and 
effective methodology for the design of such WSNs. 

1. Introduction 

In time-sensitive Wireless Sensor Network (WSN) 
applications, it is important that time-critical messages arrive 
to their destination prior to the expiration of their deadlines [1]. 
This requires a priori dimensioning of the available resources 
of the WSN to provide an end-to-end guaranteed service from 
the source node to the sink (e.g. control station).  

Typically, wireless sensor networks can be organized in 
unstructured peer-to-peer or structured cluster-based 
topologies. In spite of a greater flexibility, the peer-to-peer 
model is, in general, not suitable to provide predictable service 
guarantees, mainly due to its unstructured nature, and also to 
the typical use of contention-based Medium Access Control 
(MAC) mechanisms. On the other hand, structured cluster-
based topologies are quite suitable for WSNs with demanding 
requirements in terms of Quality of Service (QoS) support and 
real-time communications. In the literature, cluster-based 
topologies have been deployed to improve service guarantees 
in WSNs, by either using deterministic MAC protocols based 
on Time Division Multiple Access (TDMA) [2, 3] or two-
tiered architectures [4, 5]. The cluster-tree topology is a 
particular case of cluster-based topologies, which uses multi-
hop tree routing to transport data from the source to the 
destination. The tree defines a backbone that consists of a set 
of routers (also called cluster-heads) that collect data from 

sensor nodes belonging to their cluster, and forward it to the 
next level routers in the tree until reaching the sink. 

A common feature of cluster-tree WSNs is that each node 
(or a subset of nodes) can be granted a minimum service 
guarantee all along the path through which the data is relayed, 
by the allocation of some resources (e.g. time slots in TDMA 
or bandwidth sharing) in each intermediate router. The 
communication path between two nodes in the cluster-tree 
network will then have an end-to-end predictable service 
guarantee, thus enabling the evaluation of worst-case 
performance metrics, namely the delay bounds and resource 
requirements. In what follows, we refer to resource 
requirements to denote bandwidth and buffering requirements 
in each router. 

In this paper, we show that a cluster-tree topology can be 
modeled by three parameters: its depth, the maximum number 
of child nodes and the maximum number of child routers per 
parent router. In a cluster-tree topology, a node is a simple 
device that collects sensory data and forwards it to the parent 
router to which it is associated. A router is a device that has 
more advanced networking capabilities, in addition to the node 
functionalities. 

Given such a network model, it is then possible to predict 
the end-to-end performance of the WSN in terms of delay 
bounds and resource requirements, at design time. The purpose 
of this paper is to provide a methodology that permits this 
worst-case dimensioning of cluster-tree wireless sensor 
networks. The problem that we tackle in this paper can be 
roughly formulated as follows. 

Having a WSN organized in a cluster-tree topology, 
with a given number of nodes, a given number of 
routers, and a given depth, and provided that a 
minimum service is guaranteed to every node and 
router, what are the delay bounds for flows originated 
from nodes at a given depth in the WSN, and what are 
the minimum resource requirements in each router? 

A practical motivation that drives this work is that the 
cluster-tree topology is supported by the IEEE 
802.15.4/Zigbee protocol standards [6, 7], recently defined for 
Low-Rate Wireless Personal Area Networks (WPANs), with a 
great potential for deployment in WSN applications [8]. 
Hence, and just as an example of instantiation, we apply the 
general solution of the aforementioned problem to the specific 
case of cluster-tree WSNs based on the IEEE 802.15.4/Zigbee 
protocols. Notably, our approach can easily be applied to any 
other cluster-tree WSN offering service guarantees, such as 
LEACH [2].  
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2. Related Work and Contributions 

The prediction of the worst-case performance of WSNs has 
recently attracted several recent research works. In [9], the 
authors have defined the concept of real-time capacity of 
wireless networks as the ability of the network to deliver data 
by their deadlines. They also derived a sufficient schedulablity 
condition for a class of non-preemptive fixed priority 
scheduling algorithms. The analysis presented in this paper is 
topology-independent. Even though this work is a relevant 
contribution to the understanding of the real-time capacity of 
multi-hop WSNs, the applicability of the results to a real WSN 
remains constrained by the restrictive assumption of an ideal 
MAC, implementing a medium arbitration with zero overhead. 

Another line of research works dealing with the prediction 
of the worst-case performance of WSNs has considered the 
extension of the Network Calculus methodology [10] to WSNs 
[11-13]. Network Calculus is a theory for designing and 
analyzing deterministic queuing systems, which provides a 
mathematical framework based on min-plus and max-plus 
algebras for delay bound analysis in packet-switched networks. 
In [11], the authors have defined a general analytical 
framework, which extends Network Calculus to be used in 
dimensioning WSNs, taking into account the relation between 
node power consumption, node buffer requirements and the 
transfer delay. The main contribution in [11] is the provision of 
general expressions modeling the arrival curves of the input 
and output flows at a given parent sensor node in the network, 
as a function of the arrival curves of its children. These 
expressions are obtained by direct application of Network 
Calculus theorems. Then, the authors have defined an iterative 
procedure to compute the internal flow inputs and outputs in 
the WSN, node by node, starting from the lowest leaf nodes 
until arriving to the sink. Using Network Calculus theorems, 
the authors have extended the general expressions of delay 
bounds experienced by the aggregated flows at each hop and 
have deduced the end-to-end delay bound as the sum of all per-
hop delays on the path.  

In [12], the same authors use their methodology for the 
worst-case dimensioning of WSNs under uncertain topologies. 
The key difference, as compared to [11], is the computation of 
the worst-case topology, i.e. the topology that experiments the 
worst-case behavior in terms of delay bounds and buffering 
requirements. The same models (expressions between input 
and output flows, and the iterative procedure) in [11] have 
been used in the analysis presented in [12]. In [13], the 
analysis has been extended to support multiple sinks. The main 
results of the Sensor Network Calculus methodology that we 
use in this paper will be presented in Section 2. 

In [14], the authors have analyzed the performance of 
general-purpose sink-tree networks using network calculus and 
derived tighter end-to-end delay bounds. 

In this paper, we apply and extend the Sensor Network 
Calculus methodology to the worst-case dimensioning of 
cluster-tree topologies, which are particularly appealing for 
WSNs with stringent timing requirements. Our work differs 
from the previous works and contributes to the state-of-the art 
in three aspects. First, we provide a fine general model for 
cluster-tree WSNs defined by a depth, the maximum number 
of child nodes and the maximum number child routers per each 
parent router, and consider input flows at each nodes bounded 

by a (b,r) arrival curve, where b is the maximum burst size of 
the flow, and r is its average rate. Our work differs from [14] 
in the system model used in the analysis. In [14], the authors 
have considered a general-purpose tandem of nodes, different 
from the cluster-tree model defined in this paper. Our model is 
more accurate in the context WSNs. Second, we address the 
particular problem of the worst-case dimensioning of cluster-
tree topologies, which we believe are of a great interest for 
time-sensitive WSN applications. We apply the Sensor 
Network Calculus theory to our model and derive simple 
recurrent equations that express the resource requirements at 
each node in the network, and the per-hop as well as end-to-
end delay bounds as function of the cluster-tree parameters. A 
first advantage of our work as compared to [11-13] is the 
provision of practical recurrent equations, thus avoiding 
iterative computations (node by node). The resulting time-
complexity of such an approach is not suitable for large-scale 
WSNs. In addition, Our model is more accurate for this 
specific WSN topology than the general WSN structures 
considered in [11-13], and the results presented in this paper 
accurately show its worst-case performance. We also propose 
to evaluate the end-to-end delay bound of a given individual 
flow differently from the approaches in [11-13]. Instead of 
computing the sum of per-hop delays for aggregate flows, we 
propose to compute the end-to-end service curve of every 
individual flow along its path from its source to its destination, 
using the concatenation theorem of Network Calculus [10]. 
This methodology was used in [14] and shows that it provides 
tighter end-to-end delay bounds. The numerical results that we 
present in this paper confirm the above conclusion. Third, we 
show how to apply these results in the dimensioning of the 
worst-case performance of IEEE 802.15.4/Zigbee WSNs, 
which helps to have a better understanding of the limits of this 
standardized technology.  

On the other hand, the deterministic performance of the 
IEEE 802.15.4 protocol has been addressed in some recent 
research works [15-17]. These works have basically addressed 
the evaluation and the improvement of the Guaranteed Time 
Slot (GTS) mechanism in IEEE 802.15.4 single-cluster star-
based networks. In [15], the authors have presented an 
analytical tool using Network Calculus for modeling and 
evaluating the delay bound guaranteed by the GTS mechanism 
in a star-based WSN. In [16, 17], some schemes for improving 
the GTS mechanism have been proposed and analyzed. The 
applicability of these results only holds for single-cluster star-
based WSNs. This paper contributes to the analysis of the GTS 
mechanism by extending it to a multi-hop cluster-tree 
topology. 

To our best knowledge, the analysis of deterministic 
guarantees in cluster-tree WSNs and its application to IEEE 
802.15.4/Zigbee networks has not been addressed yet.  

3. Background  

3.1 Network Calculus Fundamentals 

Network Calculus is a mathematical tool based on min-plus 
and max-plus algebras for designing and analyzing 
deterministic queuing systems [10]. A basic system 
representation is illustrated in Fig. 1. 
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Fig. 1. System representation in Network Calculus theory 

For a given data flow, the input function is the cumulative 
arrival function denoted by R(t), which represents the number 
of bits that arrive during the interval [0, t]. We denote by R*(t) 
the output function of the flow, which represents the number 
of bits that leave the system during the interval [0, t].  

Furthermore, Network Calculus theory assumes that: 

• It exists an arrival curve α (t) that upper bounds R(t) 
such that ( ) ( ) ( ),  0 ,  s s t R t R s t sα∀ ≤ ≤ − ≤ − . This 
inequality means that the amount of traffic that arrives to 
receive service in any interval ,s t⎡ ⎤⎣ ⎦  never exceeds 

( )t sα − . It is also said that R(t) is constrained by α(t), or 
R(t) ~ α(t). 

• It exists a minimum service curve β (t) guaranteed to 
R(t). This means that the output flow during any given 
busy period [t, t+Δ] of the flow is at least equal to β (Δ), 
i.e. ( ) ( ) ( )* *R t R t β+ Δ − ≥ Δ , where Δ > 0 is the duration 
of any busy period.  

The knowledge of the arrival and service curves enables the 
computation of the delay bound Dmax, which represents the 
worst-case response time of a message, and the backlog bound 
Qmax, which is the maximum queue length of the flow. 

The delay bound, Dmax, for a data flow with an arrival 
curve ( )tα  that receives the service curve ( )tβ  is the 
maximum horizontal distance between ( )tα and ( )tβ  (see 
Fig. 2), and is expressed as follows: 

( ) ( )( ){ } ( )max
0

sup inf 0   ,
s

D s s d t tτ α β τ
≥

= ≥ ≤ + ≥ ∀  (1) 

The backlog bound, Qmax, for a data flow with an arrival 
curve ( )tα  that receives the service ( )tβ  is the maximum 
vertical distance between ( )tα and ( )tβ , and is expressed as: 

( ) ( )( ) ( )max
0

sup   ,
s

Q s s q t tα β
≥

= − ≥ ∀
 

(2) 

Fig. 2 presents an example of the delay and backlog bound 
computation for a linear arrival curve ( )t b r tα = + ⋅ that 
receives a rate-latency service curve ( ) ( ),R T t R t Tβ += ⋅ − , 
where R r≥  is the guaranteed bandwidth, T is the maximum 
latency of the service and ( ) ( )max 0,x x+ = . 

 
Fig. 2. Delay and backlog bounds 

This service curve is typically used for servers that provide 
a bandwidth guarantee with a certain latency. The latency T 
refers to the deviation of the service (e.g. blocking factor of 
non-preemptive transmissions). 

The delay bound Dmax (presented in Fig. 2) guaranteed for 
the data flow with the arrival curve ( )t b r tα = + ⋅  (also called 
(b, r)-curve) by the service curve ( ) ( ),R T t R t Tβ += ⋅ −  is 
computed as follows [10]: 

max
bD T
R

= +  (3)

and the backlog bound is expressed as [10]: 

maxQ b r T= + ⋅  (4)

In our analysis, we will use the previous linear arrival curve 
and the rate-latency service curve since they accurately 
represent the system as it will be explained in Section 4.  

In Network Calculus, it is also possible to express an upper 
bound for the output flow and the equivalent service curve for 
the concatenation of two service curves. 

The output function R*(t), of a flow R(t) constrained by an 
arrival curve α(t) that traverses a system offering a service 
curve β(t), is constrained by output bound α∗ (t): 

( ) ( )( )* t tα α β=  (5) 

where  is the min-plus deconvolution defined for ,f g ∈F , 
where F  is the set of wide-sense increasing functions, as: 

( )( ) ( ) ( )( )
0

sup
s

f g t f t s g s
≥

= + −  

We consider the following corollary as an application of 
Eq. (5) to the case of a linear arrival curve and a rate-latency 
service curve. The proof can be found in [18].  

Corollary 1. Assume that a flow is constrained by an 
arrival curve ( )    t b r tα = + ⋅ and a FIFO node provides a 
guaranteed service curve ( ) ( ),R T t R t Tβ += ⋅ −  to the flow. 
Then, the output bound of the flow is expressed as: 

( ) ( )* t t r Tα α= + ⋅  (6) 

And for any constant K ∈ , we easily show that: 

( )( ) ( ) ( )( ), ,.R T R TK t t K tα β α β⋅ =  (7) 
 

Concatenation of Nodes. Assume that a flow R(t) traverses 
systems S1 and S2 in sequence, where S1 offers service curve 
β1(t) and S2 offers β2(t). Then, the resulting system S, defined 
by the concatenation of the two systems S1 and S2, offers the 
following service curve to the flow: 

( ) ( )( )1 2t tβ β β= ⊗  (8) 

where ⊗ is the min-plus convolution defined for ,f g ∈F as: 
( )( ) ( ) ( )( )

0
inf

s t
f g t f t s g s

≤ ≤
⊗ = − +  

3.2 Network Flow Analysis 

Some results of the Sensor Network Calculus methodology 
that are relevant for our analysis are presented next.  

The sensor network model (refer to Fig. 3) considers that, 
for a given path, each node has one parent and one or more 
children (with the exception of end nodes). It is assumed that 
each node i has an input flow with an arrival curve ( )i tα . 
Hence, the total input of a given parent node i is the sum of its 
input and the outputs of its children as obtained by Eq. (5).  
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Fig. 3. The sensor network model 

As a result, the total input flow of a given parent node i is: 

( ) ( ) ( )*
( , )

1

n

i i Child i j
j

t t tα α α
=

= + ∑
 

(9) 

Applying Eq. (5) again to the parent node i, assuming that it 
has been guaranteed a service curve βi(t), its output flow is 
expressed as follows: 

( ) ( )( ) ( )* *
( , )

1

n

ii i i Child i j i
i

t t tα α β α α β
=

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= = +
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑
 

(10) 

Hence, the network flow analysis in the Sensor Network 
Calculus methodology consists in computing iteratively the 
output flow bound ( )*

i tα  using the above equations, from the 
bottom of the network until arriving to the destination (sink). 
Then, the per-hop delay bound is computed node by node 
using Eq. (1), and the end-to-end delay bound in a given path 
is then equal to the sum of all per-hop delay bounds.  

3.3 Aggregate Scheduling 

Consider a FIFO queue that multiplexes many flows and offers 
them a given guaranteed service curve β (t). Hence, applying 
Eqs. (1) and (2), it is possible to compute the delay and 
backlog bounds for the entire aggregate flow (the sum of all 
flows) that enters the FIFO queue, provided that this aggregate 
is bounded by an arrival curve. Note that while these delay and 
backlog bounds are global for all flows, it is also possible to 
compute the delay bounds for individual flows. We provide the 
following corollary for aggregate scheduling in Network 
Calculus, which will be used in our approach. This corollary is 
a direct result from Proposition 6.2.1 in [10], and the proof can 
be found in [19]. 

 Corollary 2. Aggregate Scheduling. Consider a FIFO 
node that multiplexes two flows 1 and 2. Assume that flow 2 is 
constrained by an arrival curve 2 2 2( )    t b r tα = + ⋅ and the 
FIFO node provides a guaranteed service curve 

( ) ( ),R T t R t Tβ += ⋅ −  to the aggregate of flows. Then, for any 
0θ ≥ , flow 1 is guaranteed the service curve: 

( ) ( ) ( )
{ }

2 21
2

2
1 t

b r T
t R r t T

R rθ θ
θ

β
+

>

⎡ ⎤⎛ ⎞+ ⋅ −
= − ⋅ − +⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 (11) 

 

4. System Model 

In this section, we present the cluster-tree network model and 
the corresponding traffic model that we consider in the rest of 
this paper. We also discuss its validity for real-world WSNs. 

4.1 The Cluster-Tree Network Model 

Like in any tree network, the cluster-tree topology contains a 
special node called root, which identifies the entire network. In 
addition, in a tree network, some special devices may have the 
ability to allow the association from other nodes. These nodes 
are called routers. Other end devices with no ability to 
associate other devices are called child nodes. Both child 
nodes and routers are assumed to have sensing capabilities and 
are referred to as sensor nodes.  

Fig. 4 presents an example of the cluster-tree network with 
the three types of nodes. A cluster-tree network is then a tree 
network where each router forms it own logical cluster. 

 

Fig. 4. The cluster-tree network model 

Basically, we aim to specify the worst-case cluster-tree 
topology, i.e. the network configuration that leads to the worst-
case delay bounds and resource requirements. This means that 
a dynamically changing cluster-tree WSN can assume different 
cluster-tree configurations, but, it can never exceed the worst-
case topology, in terms of maximum depth and number of 
child routers/nodes. 

For that purpose, we specify the worst-case cluster-tree 
topology model by the following three parameters: 

• maxDepth: represents the maximum depth of the 
network, which specifies the maximum number of 
logical hops for a message from a router to reach the 
root (including the root as final hop). This means that 
the network cannot expand more if the maximum 
logical distance from a router to the root is equal to 
maxDepth. The root is considered to be in a depth 
equal to zero. Hence, the maximum depth of a child 
node is then maxDepth+1 (see Fig. 4). 

• Nchild: the maximum number of child nodes that can be 
associated to a parent router and have been allocated 
resource guarantees (e.g. time slots or bandwidth).  

• Nrouter: the maximum number of child routers that can 
be associated to a parent router and have been allocated 
resource guarantees. 

The example illustrated in Fig. 4 corresponds to a setting 
where maxDepth = 3, Nrouter = 2 and Nchild = 3.  

Note that a cluster-tree WSN may contain additional 
routers/nodes per parent router than those defined by Nrouter and 
Nchild. However, these additional devices are not granted 
guaranteed resources. An illustrative example showing the 
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constraints on these parameters will be presented in the 
application to IEEE 802.15.4/Zigbee protocols, in Section 6. 

By convention, we say that a router at depth i is upstream to 
a router at a depth j, if and only if i < j. 

4.2 The Traffic Model 

Data flows can be upstream (from a sensor node to the sink) or 
downstream (from the sink to a given node). Typically, in 
WSNs, critical messages are forwarded from individual sensor 
nodes to the sink (e.g. control station), in the upstream 
direction. The downstream direction is more dedicated to 
queries sent by the control station. Without loss of generality, 
we assume that the control station is attached to the root, and 
thus we focus on critical flows in the upstream direction, from 
sensor nodes to the root. In this paper, the case of downstream 
flows is not considered due to space limitations. 

In critical situations, every child node/router in a WSN can 
be required to send a data flow to report its sensory data. In the 
worst-case scenario, all child nodes/routers that have allocated 
resources will have data to send to the sink. We assume that 
the maximum individual data flow that can be sent by each 
child node/router is bounded by the arrival curve 

( )data data datat b r tα = + ⋅ , where bdata is the maximum burst size 
of the data flow, and rdata is its average rate. Observe in Fig. 4 
that each child node and router has its sensory data input 
bounded by αdata(t). This is an advantage of using Network 
Calculus representation, since instead of considering the real 
flow, which may be variable (e.g. periodic traffic, aperiodic 
traffic, stochastic traffic), we merely consider an upper bound 
of the cumulative arrivals of the flow, independently from its 
nature. This traffic model also incorporates the classical 
representation of the periodic arrival model with or without 
jitter [20]. In case of heterogeneous traffic sources (different 
types of sensors), ( )data tα  will represent the curve of the 
highest cumulative arrival function. This may introduce more 
pessimism to the analysis if the variance between different 
node’s traffic is very significant. However, in most WSN 
applications, the variance between different traffic flows is 
likely to be small, since special events are commonly reported 
by similar sensory data (e.g. temperature measurements, 
electromagnetic signals). 

As for the service model granted for each flow, recall that 
we consider child nodes and routers that have been allocated 
guaranteed resources. Thus, since the arrival curve in every 
child node is constrained by αdata(t), it is assumed that each 
child node has a service guarantee from its parent router 
corresponding to the service curve ( ) ( )data data datat R t Tβ += ⋅ − , 
where data dataR r≥ is the guaranteed bandwidth and Tdata is the 
maximum latency of the service, which refers to the deviation 
of the service (e.g. blocking factor or non preemptive 
transmissions). The latency depends on the resource allocation 
mechanism. This service curve model fits any kind of 
bandwidth guarantees, such as fair queuing, TDMA slot 
allocation or IEEE 802.15.4 GTS mechanism [15]. 

On the other hand, child routers are also allocated 
guaranteed resources by their parent routers. Contrarily to the 
previous case, the amount of bandwidth required for each child 
router depends on the amount of traffic at its input. For 
instance, a router that is located at a higher depth in the tree 
(closer to the root) must provide more bandwidth and buffering 
resources than a router located at a lower depth (farther from 

the root), due to the accumulation of upstream data flows in 
the direction of the root. In addition, due to the symmetry of 
our model, the bandwidth and buffering requirements only 
depend on the depth of the router, i.e. all routers at the same 
depth must provide the same resource guarantees. As a result, 
we assume that any router j at a depth i provides a service 
guarantee to each of its child routers corresponding to the 
service curve ( ) ( )i i it R t Tβ += ⋅ − , where iR  is the guaranteed 
bandwidth, which must be higher than the overall rate of all 
the input flows, and Ti is the maximum latency of the service. 

Given such a cluster-tree topology model, we address the 
worst-case dimensioning and performance analysis of the 
WSN. In particular, we aim to characterize:  

• The minimum resource requirements in each router, 
in terms of (1) bandwidth requirement Ri and (2) 
buffering requirement, i.e. the maximum buffer size 
needed to store the bulk of data at the router’s input.  

• The maximum delay bound of the WSN, which 
represents the delay experienced by a data flow of a 
node in the lowest depth (maxDepth+1) to reach the 
root. 

5. Cluster-Tree Network Analysis 

In this section, we analyze the cluster-tree topology model for 
WSN presented in Section 4. To address the worst-case 
dimensioning problem, the first step is to derive recurrent 
equations of the input and output flows inside the WSN. Then, 
we characterize the resource requirements and the 
corresponding service curves at each router. Finally, with the 
knowledge of the input arrival curves and the service curves, 
we derive the delay bounds for individual data flows.  

To give a practical intuition on the general solution, let us 
consider the example in Fig. 4 corresponding to a cluster-tree 
WSN with maxDepth = 3, Nrouter = 2 and Nchild = 3. We propose 
to evaluate the input/output arrival curves and service curves, 
depth by depth, using the Sensor Network methodology 
starting from the lowest leafs. Then, we deduce the general 
recurrent expressions.  

5.1 Computation of Input and Output Flows 

Consider the following queuing system in Fig. 5, which is 
equivalent to the one in Fig. 4.  

 
Fig. 5. Queuing system model 

Analysis of depth maxDepth+1 (depth = 4) 
At depth maxDepth+1 (see Fig. 4), there is no router, and there 
are nodes with input data flows, each flow constrained by the 
arrival curve αdata(t). Since each node is granted a service 
curve βdata(t), then using Eqs. (5) and (6), the output flow of 
each child node can be expressed as follows: 

( ) ( )( ) ( )*
data data data data data datat t t r Tα α β α= = + ⋅  (12) 
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Analysis of depth maxDepth (depth = 3) 
At depth maxDepth (see Fig. 4 and Fig. 5), the total input of 
each router, denoted by ( )maxDepth tα , comprises its sensory 
data flow constrained by αdata(t), and the sum of the output 
flows of its child nodes. 

( ) ( ) ( )*
maxDepth data Child datat t N tα α α= + ⋅  

Thus, according to Eq. (12), we have: 

( ) ( ) ( )1maxDepth Child data Child data datat N t N r Tα α= + ⋅ + ⋅ ⋅  (13) 

Note that ( )1maxDepth child datar N r= + ⋅  is the resulting rate 
of the aggregate of ( )1childN +  input data flows, and 

( )1maxDepth child data Child data datab N b N r T= + ⋅ + ⋅ ⋅  is its resulting 
burst. 

The input flow ( )maxDepth tα  is forwarded by the router at 
depth maxDepth to its parent router at depth maxDepth-1. This 
child router is allocated a service curve 

( ) ( )1 1 1maxDepth maxDepth maxDeptht R t Tβ
+

− − −= ⋅ −  by its parent. 
Hence, according to Eq. (5), the output flow from a child 
router at depth maxDepth is then expressed as: 

( ) ( ) ( )( )*
1maxDepthmaxDepth maxDeptht t tα α β −=  

As a result, applying Eq. (6) we get: 

( ) ( )*
1maxDepthmaxDepth maxDeptht tα α σ −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

where 1 1maxDepthmaxDepth maxDepthr Tσ − −= ⋅  
(14) 

Analysis of depth maxDepth-1 (depth = 2) 
At depth maxDepth-1, the total input of each router, denoted by 

( )1maxDepth tα − , comprises its sensory data flow constrained 
by αdata(t), and the sum of the output flows of its child routers 

( )*
maxDepth tα  and the output of its child nodes ( )*

data tα . It 
results that: 

( ) ( ) ( )( ) ( )( )* *
1maxDepth data child data router maxDeptht t N t N tα α α α− = + ⋅ + ⋅  

Thus, according to Eqs. (13) and (14) we have: 

( )

( ) ( )

1

11

maxDepth

maxDepthrouter router maxDepth

t

N t N

α

α σ

−

−

=

⎛ ⎞+ ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (15) 

The input flow ( )1maxDepth tα −  is forwarded by the router at 
depth maxDepth-1 to its parent router at depth maxDepth-2. 
This child router is allocated a service curve 

( ) ( )2 2 2maxDepth maxDepth maxDeptht R t Tβ
+

− − −= ⋅ −  by its parent. 
Hence, according to Eq. (5), the output flow from a child 
router at depth maxDepth-1 is then expressed as: 

( ) ( ) ( )*
11 2maxDepthmaxDepth maxDeptht t tα α β−− −=  

As a result, applying Eqs. (6) and (15) we get: 

( ) ( ) ( )*
1

1 2

1 maxDepthrouter
maxDepth

router maxDepth maxDepth

N t
t

N

α
α

σ σ
−

− −

+ ⋅ +
=

⋅ +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where ( )2 21 maxDepthmaxDepth router maxDepthN r Tσ − −= + ⋅ ⋅  

(16) 

Analysis of depth maxDepth-1 (depth = 1) 
Similarly to the previous case, the input flow of each router 

at depth maxDepth-2 is expressed as follows: 

( ) ( ) ( )2

2
2

1 2

1 maxDepthrouter router
maxDepth

router maxDepth router maxDepth

N N t
t

N N

α
α

σ σ
−

− −

+ + ⋅
=

⋅ + ⋅

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (17) 

and the output flow from a child router at depth maxDepth-2 
for a service curve ( )3maxDepth tβ −  is then expressed as: 

( ) ( )*
22 3maxDepthmaxDepth maxDeptht tα α σ−− −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 where 

( )2
3 31 maxDepthmaxDepth router router maxDepthN N r Tσ − −= + + ⋅ ⋅  

(18) 

General expressions of input/output flows for depth 
maxDepth-i  

By recurrence, we can easily prove that the input flow of 
each router at depth (maxDepth-i) is expressed as follows: 

( )

( ) ( )( )
1

1
0 0

maxDepth i

i i
j i j

maxDepthrouter router maxDepth j
j j

t

N t N

α

α σ

−

−
−

− +
= =

=

⎛ ⎞
⎜ ⎟ ⋅ + ⋅
⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑

where
1

0

n
k

maxDepthmaxDepth n router maxDepth n
k

 N r Tσ
−

− −
=

⎛ ⎞
⎜ ⎟= ⋅ ⋅
⎜ ⎟
⎝ ⎠
∑   

(19) 

and the output flow from a child router at depth (maxDepth-i) 
for a service curve ( ) ( )1maxDepth i tβ − +  is then expressed as: 

( ) ( ) ( )

( ) ( )( )

*

0 0

1

1

maxDepth i

i i
i j

maxDepth router maxDepth-
j j

maxDepth i maxDepth- i

j
router j

t

N t N

tα

α σ

α σ−

−

= =

− +

+

=

⋅ + ⋅

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑

 (20) 

5.2 Per-Router Resource Requirements  

Bandwidth requirements  
So far, we have computed the internal input and output flows 
at each router as a function of its depth. Now, we propose to 
compute the resource requirements at each router that must be 
provided to its children to ensure bounded end-to-end delays 
and to avoid buffering overflow. 

First, in order to ensure bounded delays, it is mandatory that 
the amount of bandwidth guaranteed to the input flow at each 
router is greater than or equal to the input arrival rate.  

Consider a parent router at depth maxDepth-(i+1) that 
offers the service curve ( ) ( )1maxDepth i tβ − +  to one of its child 
routers with the input flow arrival curve ( )maxDepth i tα − . It is 
then necessary to have: 

( )1 maxDepth imaxDepth iR r −− + ≥  (21) 

According to Eqs. (19) and (20), we obtain: 

( )

*

0

i
j

maxDepth i maxDepthmaxDepth i router
j

maxDepthmaxDepth i router

r r N r

                             N rγ

− −
=

−

⎛ ⎞
⎜ ⎟= = ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

= ⋅

∑
 (22) 
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( )maxDepth i routerNγ −  is called the bandwidth increase 
factor at a given depth (maxDepth-i). Note that 

( )maxDepth routerNγ  refers to the total number of routers in the 
network. The parameter ( )maxDepth i routerNγ −  increases with 
the depth and Nrouter, and this factor represents the ratio of the 
additional bandwidth that a router, at a depth (maxDepth-i), 
must provide to each of its child routers as compared to the 
bandwidth guaranteed at the lowest depth maxDepth. 

 
a. Bandwidth increase factor as a 
function of the depth and Nrouter 

 
b. Feasible region for γi(Nrouter)=102 

Fig. 6. Bandwidth increase factor (log-scale)  

Fig. 6 presents the variation of the bandwidth increase 
factor (logarithmic-scale) as a function of the depth of the 
router and Nrouter. 

It can be observed that if Nrouter is high (e.g. equal to 5) the 
impact of the depth on the bandwidth requirement is very 
significant. Note that the variation is very limited for the case 
of Nrouter = 1, even for a depth equal to 10. Depending on the 
maximum bandwidth increase factor allowed when 
dimensioning the WSN, high values of the Nrouter parameter 
can be tolerated if the maximum depth of the network is 
limited. For instance, if the cluster-tree WSN cannot tolerate a 
bandwidth increase factor more than 102 (see Fig. 6.b) all 
points in the (X,Y,Z) axis located below the plan defined by 

2Z=10 ,  X,Y∀ are potential solutions to determine the pair 
(Nrouter, maxDepth). For example, with this bandwidth increase 
constraint, the maxDepth parameter cannot exceed 2 if Nrouter = 
5, while it can be set to 5 if Nrouter = 2. 

Buffering requirements 
The buffering requirement of a given router at a depth 
(maxDepth-i) stands for the minimum buffer size required to 
store the incoming bulk of data to avoid buffer overflow. Since 

( )maxDepth i tα −  is the input of a router at a depth (maxDepth-
i), the minimum buffer size must be greater than the burst size 

maxDepth ib −  of the input arrival curve ( )maxDepth i tα − . If we 
denote by QmaxDepth-i the minimum buffering requirement of a 
router at a depth (maxDepth-i), then according to Eq. (21), we 
obtain: 

( )( )
1

1
0 0

latencyburst
maxDepth i maxDepth i maxDepth i

i i
j i j

maxDepthrouter router maxDepth- j
j j

Q Q Q

N b N σ

− − −

−
−

+
= =

= + =

⎛ ⎞
⎜ ⎟ ⋅ + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑

 (23) 

Observe that the buffering requirement is the sum of two 
terms. The first term is related to the input burst and is a 
function of the ( )maxDepth i routerNγ −  factor, thus the same 
behavior as with the bandwidth requirement applies for this 
term. The second term represents the cumulative effect of the 
service latency at each depth. This term closely depends on the 
service curve guaranteed to the child routers. 

5.3 Delay Bound Analysis 

We propose to compute the maximum delay bound of the 
cluster-tree WSN, which is the delay bound of a data flow sent 
by a node in the lowest depth (maxDepth+1) to reach the root. 
There are two approaches to compute this delay bound.  

The First Approach (per-hop delay bounds for aggregates) 
The first approach consists in computing the per-hop delay 
bounds of the aggregate input flows, and then deducing the 
end-to-end delay bound as the sum of per-hop delays. This 
approach was used in [11, 12]. 

The maximum per-hop delay bound in a router at a depth 
( )maxDepth i−  can be obtained using Eq. (3) applied to the 
input arrival curve ( )maxDepth i tα −  and to the service curve 

( ) ( )1maxDepth i tβ − + . Assuming inequality (21) is satisfied, the 
delay bound is expressed as: 

( )
( )1

1

maxDepth i
maxDepth i maxDepth- i

maxDepth i

b
D T

R
−

− +
− +

= +  (24) 

where maxDepth ib −  is the burst size of ( )maxDepth i tα −  defined 
in Eq. (19). 

Hence, using this approach, the maximum end-to-end delay 
bound in the cluster-tree topology is the sum of all maximum 
per-hop delay bounds and is equal to: 

2
max

0

maxDepth
e e

data maxDepth i
i

D D D −
=

= + ∑   where 

data
data data

data

bD T
R

= +  
(25) 

Note that Ddata is the delay bound guaranteed to a child node 
associated to a router at depth maxDepth. 

This approach is a bit pessimistic, since the delay bound at 
each hop concerns the aggregate input flow at each router. A 
tighter delay bound is derived next. 

The Second Approach (tighter delay bounds) 
The idea of the second approach is to use the aggregate 
scheduling corollary based on Eq. (11) and the service curve 
concatenation theorem based on Eq. (8). First, we aim to 
derive the service curve offered to a particular individual flow 
F among the aggregate by a router at a given depth, using Eq. 
(11). Then, we deduce the equivalent service curve for this 
particular flow along the path, using Eq. (8). The delay bound 
will be computed based on the equivalent service curve. This 
technique has been used in [14].  

We consider the tandem of service curve elements as 
presented in Fig. 5. The approach is based on the following 
algorithm: 

• Step 1. βlast is equal to the last service curve element 
(i.e. router) in the tandem. 

• Step 2. Compute the βeq equivalent service curve to an 
output flow of the previous service curve element βlast-1 
using Eq. (11). 

• Step 3.Replace βlast = βlast-1⊗βeq since the concatenation 
is also a service curve to the input of βlast-1. The length 
of the tandem is then reduced by one. 

• Step 4. if the tandem length is greater than one, then 
Go to Step 1; else, βlast is the equivalent end-to-end 
service curve. 

• Step 5. Compute the delay bound using the equivalent 
service curve applied to the input arrival curve.  
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It is easy to derive recurrent expressions for the delay bound 
using the above algorithm, as it is shown in [18]. In Section 6, 
we show that this approach provides tighter delay bounds than 
the first one.  

6. Application to IEEE 802.15.4/Zigbee 

The aforementioned analysis is independent from any specific 
protocol. In addition, the proposed model is quite interesting 
for existing cluster-tree WSN protocols that provide 
guaranteed services, such as LEACH [2] or IEEE 
802.15.4/Zigbee [6, 7], and it can be easily used for their 
worst-case dimensioning. In this section, we show the practical 
applicability of our approach by instantiating the general 
model proposed in Section 5 for IEEE 802.15.4/Zigbee cluster-
tree WSNs, and provide a methodology for its worst-case 
dimensioning. The computations are made using MATLAB. 

6.1 The IEEE 802.15.4/Zigbee Protocol Features 

In IEEE 802.15.4 beacon-enabled mode, beacon frames are 
periodically sent by a central device, called PAN Coordinator, 
to identify its WPAN and synchronize nodes that are 
associated with it. Doing so, a superframe structure is defined 
by (see Fig. 7) (1) the Beacon Interval (BI), which defines the 
time between two consecutive beacon frames, (2) the 
Superframe Duration (SD), which defines the active portion in 
BI, and is divided into 16 equally-sized time slots, during 
which frame transmissions are allowed. Optionally, an inactive 
period is defined if BI > SD. During the inactive period (if it 
exists), all nodes may enter in a sleep mode to save energy. 

 
Fig. 7. Beacon Interval and Superframe concepts 

BI and SD are determined by two parameters, the Beacon 
Order (BO) and the Superframe Order (SO), respectively, as 
follows: 

 0 14
2

2  

BO

SO
for SO BO

BI aBaseSuperframeDuration

SD aBaseSuperframeDuration
≤ ≤ ≤

⎫= ⋅ ⎪
⎬

= ⋅ ⎪⎭
(26)

aBaseSuperframeDuration = 15.36 ms (assuming 250 kbps 
in the 2.4 GHz frequency band) denotes the minimum duration 
of the superframe, corresponding to 0SO = . 

During the SD, nodes compete for medium access using 
slotted CSMA/CA in the Contention Access Period (CAP). For 
time-sensitive applications, IEEE 802.15.4 enables the 
definition of a Contention-Free Period (CFP) within the SD, 
by the allocation of Guaranteed Time Slots (GTS). It has been 
shown in [15] that the GTS mechanism provides a rate-latency 
service curve to nodes that allocate time-slots, where the rate 
and the latency depend on BI, SD and the number of allocated 
time slots in the GTS. 

While IEEE 802.15.4 only supports the beacon-enabled 
mode only for star-based topologies, Zigbee has proposed its 

extension to cluster-tree topologies, where the PAN 
Coordinator (or Zigbee Coordinator) is identified as the root of 
the network, and the other coordinators as intermediate routers 
that also generate beacon frames to their child nodes (nodes 
that are associated to the network through the router). In order 
to avoid beacon collisions between multiple routers, the 
Zigbee standard has proposed a beacon scheduling approach 
such that the superframe durations are non-overlapping during 
a beacon interval. Fig. 8 illustrates a simple example of this 
approach for four nodes with the same SD and BI. This 
approach is suitable for WSNs operating in low duty cycles. 

 
Fig. 8. The beacon scheduling approach in Zigbee 

6.2 Dimensioning of an IEEE 802.15.4/Zigbee 
Cluster-Tree WSN 

Let us consider a WSN organized in a cluster-tree topology, 
with the same parameters as for the example in Fig. 4 
(maxDepth = 3, Nrouter = 2, Nchild = 3). Nrouter and Nchild are the 
number of routers and nodes that allocate GTSs from their 
parents. Since the standard does not allow more than seven 
GTS allocations, Nrouter and Nchild are constrained as follows: 

7router childN N+ ≤  (27)
In our application scenario, we assume that all routers have 

the same SD and BI, and the superframe durations are not 
overlapping with each other, as presented in Fig. 8. According 
to our traffic model, we assume that each sensor node (router, 
or child node) generates a data flow constrained by the arrival 
curve ( )data data datat b r tα = + ⋅ .  

BO and SO settings 
It has been shown in [15] that the service curve provided by 

a GTS allocation intrinsically depends on the setting of BI and 
SD. Hence, the first problem that we address is to determine 
the BO and SO parameters. First, let us assume that SO = 0, 
which corresponds to SD = 15.36 ms for all routers. On the 
other hand, the number of routers in cluster-tree topology is 
equal to ( )3 2 15γ = , according to Eq. (22). 

The first constraint is that BO must be set such that at least 
15 superframe durations with SO = 0 fit inside the beacon 
interval to have non-overlapping active periods (as in Fig. 8). 
It results that: 

( ) ( ) 0
3 32 2 2 2BOBI SDγ γ≥ ⋅ ⇔ ≥ ⋅  (28)

As a result, the minimum BO is defined as: 

( )( )min 2 3log 2 4BO γ⎡ ⎤= =⎢ ⎥  (29)

It is then possible to have 24 = 16 SDs inside one BI. The 
resulting duty cycle for each router is equal to (1/16) = 6.25%.  

Bandwidth per time slot 
Each allocated time slot of a GTS has a portion used for 
effective data transmission and a portion used by overheads 
(inter-frame spacing, acknowledgement frames if required). 
According to [15], the maximum bandwidth guaranteed by a 
time slot for SO = 0 is equal to 9.38 kbps with 100% duty 
cycle. Hence, with the above network setting, the bandwidth 
guaranteed by one allocated time slot in a given superframe is 
equal to 9.38 kpbs 0.625TSR = ⋅ , which gives 0.586 kbpsTSR = . 
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Sensing input rate limits 
Each SD is divided into 16 equal time slots. The standard 
suggests to have a minimum CAP length of 7.04 ms, which 
corresponds to approximately 8 time slots with SO = 0. Hence, 
the maximum CFP length in this case is restricted to 8 time 
slots. Just for illustration purposes, we assume that the 
maximum CFP length is equal to LCFP = 14 (only two time 
slots are left for the CAP).  

With this constraint, a router cannot reserve more than LCFP 
time slots for its child nodes and routers. Assuming that each 
child node allocates at most one time slot (arrival rate of 
sensory data is smaller than RTS), thus the remaining time slots 
for the Nrouter child routers is equal to (LCFP – Nchild). Since the 
bandwidth requirement mainly depends on the arrival rate of 
the sensory data flow (see Eq. (22)), this parameter must be 
limited in order to not exceed the maximum bandwidth that a 
router can provide. 

Obviously, due to the cumulative upstream flow effect, the 
maximum bandwidth requirement will be claimed by the child 
routers of the root. Hence, at the root level, the maximum 
number of time slots that can be allocated to each child router 
is equal to ( ) -   CFP child routerL N N⎢ ⎥⎣ ⎦ . The corresponding 
guaranteed bandwidth is equal to: 

0
 -     CFP child

TS
router

L NR R
N

⎢ ⎥
= ⋅⎢ ⎥

⎣ ⎦
. 

According to Eq. (21), the maximum input rate from a child 
router at a depth equal to 1, i.e. 1r , satisfies: 

( )1 1
-CFP child maxDepthTS router

router

L   Nr    R N r
N

γ
⎢ ⎥

= ⋅ = ⋅⎢ ⎥
⎣ ⎦

 

since ( )1maxDepth child datar N r= + ⋅ , we deduce that: 

( ) ( )
max

1

-
1

CFP child TS
data

router router child

L   N Rr   
N N Nγ

⎢ ⎥
= ⋅⎢ ⎥ ⋅ +⎣ ⎦

 (30) 

As a result for LCFP = 14, we get max 0.104 kbpsdatar = . In what 
follows, we assume that 200 bitsdatab =  and 0.1 kbpsdatar = .  

Bandwidth requirement and time slot number per router 
Depending on its bandwidth requirement, each child 
router/node must allocate a given number of time slots such 
that the resulting bandwidth is greater than the input rate, as 
mentioned in Eq. (21). Hence, we propose to compute the 
minimum number of time slots required for each child router 
in each depth, which will enable us to determine the rate-
latency service curve in each router. In fact, according to [15], 
a GTS with n allocated time slots provides a service curve 

( ),Rn Tn tβ , where the bandwidth  n TSR n R= ⋅  and the latency 
 nT BI n TS= − ⋅ . TS=SD/16 is the duration of the time slot.  

The bandwidth requirement maxDepth ir −  corresponding to 
each depth is computed using Eq. (22). Thus, based on Eq. 
(21), the corresponding number of time slots is expressed as:  

( )1
maxDepth iTS

maxDepth i
TS

rN
R

−
− +

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥

 

Fig. 9 presents the results for the bandwidth requirement 
versus the reserved bandwidth per router, for each depth.  

 Observe that the maximum number of time slots is 
allocated by a router at depth 1, and is equal to 5. Since there 
are two child routers and three child nodes, the total number of 
allocated time slots is 13, which is smaller than LCFP = 14.  

 
Fig. 9. Bandwidth requirements versus reserved bandwidth  

per router as a function of the depth 

Buffering requirement per router 
To estimate the buffering requirement at each router, we apply 
Eq. (23). The results are presented in Fig. 10, which shows the 
impact of depth on the buffering requirement. 

 
Fig. 10. Buffering requirements per router as a function of the depth 

Observe that the cumulative effect of the input burst is more 
important than the cumulative effect of the service latency on 
the buffering requirement. This is mainly due to the fact that 
the input arrival rate is relatively low. The effect of the service 
latency may be more important for other settings of bdata, and 
rdata. Due to space limitations, we do not address the effect of 
different settings of the arrival curve on the buffering 
requirement. It can be observed that Q1 is roughly seven times 
greater than Q3, which is basically due to the impact of the 

( )maxDepth i routerNγ −  parameter. 

Delay bound evaluation 
Fig. 11 presents the per-hop delay bounds in each router 
computed using Eq. (24), and the end-to-end delay bounds 
obtained by the first approach (using Eq. (25)), and by the 
second approach (using the recursive algorithm).  

 
Fig. 11. Per-hop delay bounds and end-to-end delay bounds as a 

function of the depth 
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A first observation confirms that the first approach using 
the sum of per-hop delays is more pessimistic than the second 
one based on the computation of the end-to-end service curve. 
The end-to-end delay bounds are quite high, even though the 
bdata and rdata are low. This is typically due to the low duty 
cycle (6.25%). It is possible to reduce the delay bounds by 
allocating more time slots in a superframe (if possible), and 
also by finding another beacon scheduling approach such that 
the beacon interval would be smaller, leading to smaller 
service latencies and higher bandwidth guarantees, since the 
duty cycle will increase. Observe also that the per-hop delay 
bounds are relatively steady, since the buffering and bandwidth 
requirements are both proportional to the ( )maxDepth i routerNγ − .  

7. Concluding Remarks 

This paper improves on the state-of-the-art with the proposal 
of a general model for wireless sensor networks (WSNs) 
organized in a cluster-tree topology, and a methodology for 
dimensioning the required network resources and analyzing its 
timing performance. We assumed a worst-case topology 
defined by a maximum depth, the maximum number of child 
routers and child nodes per parent router. We have provided 
“plug-and-play” recurrent expressions to compute the resource 
requirements (bandwidth and buffering) and message delay 
bounds for our WSN model. In addition to this theoretical 
contribution that can be applied to any cluster-tree network 
with resource guarantees, we have demonstrated how to apply 
the general results to the case of cluster-tree IEEE 
802.15.4/Zigbee WSNs. 

Our methodology provides a practical means to choose the 
adequate settings of cluster-tree WSNs, for applications with 
real-time requirements, depending on the available resources, 
and the delay bound requirement. In fact, one of the important 
general results is the relation between the resource increase 
ratio as a function of the depth and the number of routers. For 
low arrival rates, the bandwidth and buffering requirement 
increase ratios are both proportional to the factor 

( )maxDepth i routerNγ − . In this case, the per-hop delay bounds 
are roughly steady, as it has been shown in Fig. 11. For higher 
arrival rates, the impact of the service latency on the buffering 
requirements would be more important, and consequently, 
leading to an increased variance on the per-hop delays.  

The work carried out in this paper can be extended to 
evaluate the cluster-tree topology in the downstream direction, 
and also to study the impact of data aggregation on reducing 
the resource requirements and the delay bounds.  

On the other hand, the model and the methodology that we 
have proposed trigger new research lines. For instance, they 
can be used to optimize the dimensioning of IEEE 
802.15.4/Zigbee networks. The basic beacon scheduling 
approach proposed by Zigbee is not adequate for an optimized 
behavior of cluster-tree WSNs. Thus, one open issue is to 
optimize the beacon scheduling mechanism in a way that 
routers at higher depths (closer to the root) will be operating at 
higher duty cycle than routers at lower depths. The problem is 
how to choose different SO and BO for each router depending 
on its depth (i.e. bandwidth requirement). Another research 
line concerns a more efficient use of the GTSs by allowing the 
allocation of the same GTS by more than one node at the same 
time, as proposed in [16] for the single cluster case. 
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