

Modelling and Worst-Case Dimensioning of
Cluster-Tree Wireless Sensor Networks

Anis Koubaa
Mário Alves
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR-061004

Version: 1.0

Date: October 2006

Modelling and Worst-Case Dimensioning of Cluster-Tree Wireless Sensor
Networks
Anis KOUBAA, Mário ALVES, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {akoubaa@dei, mjf, emt@dei}.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Time-sensitive Wireless Sensor Network (WSN) applications require finite delay bounds in critical
situations. This paper provides a methodology for the modeling and the worst-case dimensioning of cluster-
tree WSNs. We provide a fine model of the worst-case cluster-tree topology characterized by its depth, the
maximum number of child routers and the maximum number of child nodes for each parent router. Using
Network Calculus, we derive “plug-and-play” expressions for the end-to-end delay bounds, buffering and
bandwidth requirements as a function of the WSN cluster-tree characteristics and traffic specifications. The
cluster-tree topology has been adopted by many cluster-based solutions for WSNs. We demonstrate how to
apply our general results for dimensioning IEEE 802.15.4/Zigbee cluster-tree WSNs. We believe that this
paper shows the fundamental performance limits of cluster-tree wireless sensor networks by the provision of
a simple and effective methodology for the design of such WSNs.

Modeling and Worst-Case Dimensioning
of Cluster-Tree Wireless Sensor Networks

Anis KOUBAA, Mário ALVES, Eduardo TOVAR

IPP-HURRAY! Research Group, Polytechnic Institute of Porto
Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072 Porto, PORTUGAL

{akoubaa, emt}@dei.isep.ipp.pt , mjf@isep.ipp.pt

Abstract
Time-sensitive Wireless Sensor Network (WSN) applications
require finite delay bounds in critical situations. This paper
provides a methodology for the modeling and the worst-case
dimensioning of cluster-tree WSNs. We provide a fine model of
the worst-case cluster-tree topology characterized by its depth,
the maximum number of child routers and the maximum
number of child nodes for each parent router. Using Network
Calculus, we derive “plug-and-play” expressions for the end-
to-end delay bounds, buffering and bandwidth requirements as
a function of the WSN cluster-tree characteristics and traffic
specifications. The cluster-tree topology has been adopted by
many cluster-based solutions for WSNs. We demonstrate how
to apply our general results for dimensioning IEEE
802.15.4/Zigbee cluster-tree WSNs. We believe that this paper
shows the fundamental performance limits of cluster-tree
wireless sensor networks by the provision of a simple and
effective methodology for the design of such WSNs.

1. Introduction

In time-sensitive Wireless Sensor Network (WSN)
applications, it is important that time-critical messages arrive
to their destination prior to the expiration of their deadlines [1].
This requires a priori dimensioning of the available resources
of the WSN to provide an end-to-end guaranteed service from
the source node to the sink (e.g. control station).

Typically, wireless sensor networks can be organized in
unstructured peer-to-peer or structured cluster-based
topologies. In spite of a greater flexibility, the peer-to-peer
model is, in general, not suitable to provide predictable service
guarantees, mainly due to its unstructured nature, and also to
the typical use of contention-based Medium Access Control
(MAC) mechanisms. On the other hand, structured cluster-
based topologies are quite suitable for WSNs with demanding
requirements in terms of Quality of Service (QoS) support and
real-time communications. In the literature, cluster-based
topologies have been deployed to improve service guarantees
in WSNs, by either using deterministic MAC protocols based
on Time Division Multiple Access (TDMA) [2, 3] or two-
tiered architectures [4, 5]. The cluster-tree topology is a
particular case of cluster-based topologies, which uses multi-
hop tree routing to transport data from the source to the
destination. The tree defines a backbone that consists of a set
of routers (also called cluster-heads) that collect data from

sensor nodes belonging to their cluster, and forward it to the
next level routers in the tree until reaching the sink.

A common feature of cluster-tree WSNs is that each node
(or a subset of nodes) can be granted a minimum service
guarantee all along the path through which the data is relayed,
by the allocation of some resources (e.g. time slots in TDMA
or bandwidth sharing) in each intermediate router. The
communication path between two nodes in the cluster-tree
network will then have an end-to-end predictable service
guarantee, thus enabling the evaluation of worst-case
performance metrics, namely the delay bounds and resource
requirements. In what follows, we refer to resource
requirements to denote bandwidth and buffering requirements
in each router.

In this paper, we show that a cluster-tree topology can be
modeled by three parameters: its depth, the maximum number
of child nodes and the maximum number of child routers per
parent router. In a cluster-tree topology, a node is a simple
device that collects sensory data and forwards it to the parent
router to which it is associated. A router is a device that has
more advanced networking capabilities, in addition to the node
functionalities.

Given such a network model, it is then possible to predict
the end-to-end performance of the WSN in terms of delay
bounds and resource requirements, at design time. The purpose
of this paper is to provide a methodology that permits this
worst-case dimensioning of cluster-tree wireless sensor
networks. The problem that we tackle in this paper can be
roughly formulated as follows.

Having a WSN organized in a cluster-tree topology,
with a given number of nodes, a given number of
routers, and a given depth, and provided that a
minimum service is guaranteed to every node and
router, what are the delay bounds for flows originated
from nodes at a given depth in the WSN, and what are
the minimum resource requirements in each router?

A practical motivation that drives this work is that the
cluster-tree topology is supported by the IEEE
802.15.4/Zigbee protocol standards [6, 7], recently defined for
Low-Rate Wireless Personal Area Networks (WPANs), with a
great potential for deployment in WSN applications [8].
Hence, and just as an example of instantiation, we apply the
general solution of the aforementioned problem to the specific
case of cluster-tree WSNs based on the IEEE 802.15.4/Zigbee
protocols. Notably, our approach can easily be applied to any
other cluster-tree WSN offering service guarantees, such as
LEACH [2].

2

2. Related Work and Contributions

The prediction of the worst-case performance of WSNs has
recently attracted several recent research works. In [9], the
authors have defined the concept of real-time capacity of
wireless networks as the ability of the network to deliver data
by their deadlines. They also derived a sufficient schedulablity
condition for a class of non-preemptive fixed priority
scheduling algorithms. The analysis presented in this paper is
topology-independent. Even though this work is a relevant
contribution to the understanding of the real-time capacity of
multi-hop WSNs, the applicability of the results to a real WSN
remains constrained by the restrictive assumption of an ideal
MAC, implementing a medium arbitration with zero overhead.

Another line of research works dealing with the prediction
of the worst-case performance of WSNs has considered the
extension of the Network Calculus methodology [10] to WSNs
[11-13]. Network Calculus is a theory for designing and
analyzing deterministic queuing systems, which provides a
mathematical framework based on min-plus and max-plus
algebras for delay bound analysis in packet-switched networks.
In [11], the authors have defined a general analytical
framework, which extends Network Calculus to be used in
dimensioning WSNs, taking into account the relation between
node power consumption, node buffer requirements and the
transfer delay. The main contribution in [11] is the provision of
general expressions modeling the arrival curves of the input
and output flows at a given parent sensor node in the network,
as a function of the arrival curves of its children. These
expressions are obtained by direct application of Network
Calculus theorems. Then, the authors have defined an iterative
procedure to compute the internal flow inputs and outputs in
the WSN, node by node, starting from the lowest leaf nodes
until arriving to the sink. Using Network Calculus theorems,
the authors have extended the general expressions of delay
bounds experienced by the aggregated flows at each hop and
have deduced the end-to-end delay bound as the sum of all per-
hop delays on the path.

In [12], the same authors use their methodology for the
worst-case dimensioning of WSNs under uncertain topologies.
The key difference, as compared to [11], is the computation of
the worst-case topology, i.e. the topology that experiments the
worst-case behavior in terms of delay bounds and buffering
requirements. The same models (expressions between input
and output flows, and the iterative procedure) in [11] have
been used in the analysis presented in [12]. In [13], the
analysis has been extended to support multiple sinks. The main
results of the Sensor Network Calculus methodology that we
use in this paper will be presented in Section 2.

In [14], the authors have analyzed the performance of
general-purpose sink-tree networks using network calculus and
derived tighter end-to-end delay bounds.

In this paper, we apply and extend the Sensor Network
Calculus methodology to the worst-case dimensioning of
cluster-tree topologies, which are particularly appealing for
WSNs with stringent timing requirements. Our work differs
from the previous works and contributes to the state-of-the art
in three aspects. First, we provide a fine general model for
cluster-tree WSNs defined by a depth, the maximum number
of child nodes and the maximum number child routers per each
parent router, and consider input flows at each nodes bounded

by a (b,r) arrival curve, where b is the maximum burst size of
the flow, and r is its average rate. Our work differs from [14]
in the system model used in the analysis. In [14], the authors
have considered a general-purpose tandem of nodes, different
from the cluster-tree model defined in this paper. Our model is
more accurate in the context WSNs. Second, we address the
particular problem of the worst-case dimensioning of cluster-
tree topologies, which we believe are of a great interest for
time-sensitive WSN applications. We apply the Sensor
Network Calculus theory to our model and derive simple
recurrent equations that express the resource requirements at
each node in the network, and the per-hop as well as end-to-
end delay bounds as function of the cluster-tree parameters. A
first advantage of our work as compared to [11-13] is the
provision of practical recurrent equations, thus avoiding
iterative computations (node by node). The resulting time-
complexity of such an approach is not suitable for large-scale
WSNs. In addition, Our model is more accurate for this
specific WSN topology than the general WSN structures
considered in [11-13], and the results presented in this paper
accurately show its worst-case performance. We also propose
to evaluate the end-to-end delay bound of a given individual
flow differently from the approaches in [11-13]. Instead of
computing the sum of per-hop delays for aggregate flows, we
propose to compute the end-to-end service curve of every
individual flow along its path from its source to its destination,
using the concatenation theorem of Network Calculus [10].
This methodology was used in [14] and shows that it provides
tighter end-to-end delay bounds. The numerical results that we
present in this paper confirm the above conclusion. Third, we
show how to apply these results in the dimensioning of the
worst-case performance of IEEE 802.15.4/Zigbee WSNs,
which helps to have a better understanding of the limits of this
standardized technology.

On the other hand, the deterministic performance of the
IEEE 802.15.4 protocol has been addressed in some recent
research works [15-17]. These works have basically addressed
the evaluation and the improvement of the Guaranteed Time
Slot (GTS) mechanism in IEEE 802.15.4 single-cluster star-
based networks. In [15], the authors have presented an
analytical tool using Network Calculus for modeling and
evaluating the delay bound guaranteed by the GTS mechanism
in a star-based WSN. In [16, 17], some schemes for improving
the GTS mechanism have been proposed and analyzed. The
applicability of these results only holds for single-cluster star-
based WSNs. This paper contributes to the analysis of the GTS
mechanism by extending it to a multi-hop cluster-tree
topology.

To our best knowledge, the analysis of deterministic
guarantees in cluster-tree WSNs and its application to IEEE
802.15.4/Zigbee networks has not been addressed yet.

3. Background

3.1 Network Calculus Fundamentals

Network Calculus is a mathematical tool based on min-plus
and max-plus algebras for designing and analyzing
deterministic queuing systems [10]. A basic system
representation is illustrated in Fig. 1.

3

Fig. 1. System representation in Network Calculus theory

For a given data flow, the input function is the cumulative
arrival function denoted by R(t), which represents the number
of bits that arrive during the interval [0, t]. We denote by R*(t)
the output function of the flow, which represents the number
of bits that leave the system during the interval [0, t].

Furthermore, Network Calculus theory assumes that:

• It exists an arrival curve α (t) that upper bounds R(t)
such that () () (), 0 , s s t R t R s t sα∀ ≤ ≤ − ≤ − . This
inequality means that the amount of traffic that arrives to
receive service in any interval ,s t⎡ ⎤⎣ ⎦ never exceeds

()t sα − . It is also said that R(t) is constrained by α(t), or
R(t) ~ α(t).

• It exists a minimum service curve β (t) guaranteed to
R(t). This means that the output flow during any given
busy period [t, t+Δ] of the flow is at least equal to β (Δ),
i.e. () () ()* *R t R t β+ Δ − ≥ Δ , where Δ > 0 is the duration
of any busy period.

The knowledge of the arrival and service curves enables the
computation of the delay bound Dmax, which represents the
worst-case response time of a message, and the backlog bound
Qmax, which is the maximum queue length of the flow.

The delay bound, Dmax, for a data flow with an arrival
curve ()tα that receives the service curve ()tβ is the
maximum horizontal distance between ()tα and ()tβ (see
Fig. 2), and is expressed as follows:

() ()(){ } ()max
0

sup inf 0 ,
s

D s s d t tτ α β τ
≥

= ≥ ≤ + ≥ ∀ (1)

The backlog bound, Qmax, for a data flow with an arrival
curve ()tα that receives the service ()tβ is the maximum
vertical distance between ()tα and ()tβ , and is expressed as:

() ()() ()max
0

sup ,
s

Q s s q t tα β
≥

= − ≥ ∀

(2)

Fig. 2 presents an example of the delay and backlog bound
computation for a linear arrival curve ()t b r tα = + ⋅ that
receives a rate-latency service curve () (),R T t R t Tβ += ⋅ − ,
where R r≥ is the guaranteed bandwidth, T is the maximum
latency of the service and () ()max 0,x x+ = .

Fig. 2. Delay and backlog bounds

This service curve is typically used for servers that provide
a bandwidth guarantee with a certain latency. The latency T
refers to the deviation of the service (e.g. blocking factor of
non-preemptive transmissions).

The delay bound Dmax (presented in Fig. 2) guaranteed for
the data flow with the arrival curve ()t b r tα = + ⋅ (also called
(b, r)-curve) by the service curve () (),R T t R t Tβ += ⋅ − is
computed as follows [10]:

max
bD T
R

= + (3)

and the backlog bound is expressed as [10]:

maxQ b r T= + ⋅ (4)

In our analysis, we will use the previous linear arrival curve
and the rate-latency service curve since they accurately
represent the system as it will be explained in Section 4.

In Network Calculus, it is also possible to express an upper
bound for the output flow and the equivalent service curve for
the concatenation of two service curves.

The output function R*(t), of a flow R(t) constrained by an
arrival curve α(t) that traverses a system offering a service
curve β(t), is constrained by output bound α∗ (t):

() ()()* t tα α β= (5)

where is the min-plus deconvolution defined for ,f g ∈F ,
where F is the set of wide-sense increasing functions, as:

()() () ()()
0

sup
s

f g t f t s g s
≥

= + −

We consider the following corollary as an application of
Eq. (5) to the case of a linear arrival curve and a rate-latency
service curve. The proof can be found in [18].

Corollary 1. Assume that a flow is constrained by an
arrival curve () t b r tα = + ⋅ and a FIFO node provides a
guaranteed service curve () (),R T t R t Tβ += ⋅ − to the flow.
Then, the output bound of the flow is expressed as:

() ()* t t r Tα α= + ⋅ (6)

And for any constant K ∈ , we easily show that:

()() () ()(), ,.R T R TK t t K tα β α β⋅ = (7)

Concatenation of Nodes. Assume that a flow R(t) traverses
systems S1 and S2 in sequence, where S1 offers service curve
β1(t) and S2 offers β2(t). Then, the resulting system S, defined
by the concatenation of the two systems S1 and S2, offers the
following service curve to the flow:

() ()()1 2t tβ β β= ⊗ (8)

where ⊗ is the min-plus convolution defined for ,f g ∈F as:
()() () ()()

0
inf

s t
f g t f t s g s

≤ ≤
⊗ = − +

3.2 Network Flow Analysis

Some results of the Sensor Network Calculus methodology
that are relevant for our analysis are presented next.

The sensor network model (refer to Fig. 3) considers that,
for a given path, each node has one parent and one or more
children (with the exception of end nodes). It is assumed that
each node i has an input flow with an arrival curve ()i tα .
Hence, the total input of a given parent node i is the sum of its
input and the outputs of its children as obtained by Eq. (5).

4

Fig. 3. The sensor network model

As a result, the total input flow of a given parent node i is:

() () ()*
(,)

1

n

i i Child i j
j

t t tα α α
=

= + ∑

(9)

Applying Eq. (5) again to the parent node i, assuming that it
has been guaranteed a service curve βi(t), its output flow is
expressed as follows:

() ()() ()* *
(,)

1

n

ii i i Child i j i
i

t t tα α β α α β
=

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= = +
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑

(10)

Hence, the network flow analysis in the Sensor Network
Calculus methodology consists in computing iteratively the
output flow bound ()*

i tα using the above equations, from the
bottom of the network until arriving to the destination (sink).
Then, the per-hop delay bound is computed node by node
using Eq. (1), and the end-to-end delay bound in a given path
is then equal to the sum of all per-hop delay bounds.

3.3 Aggregate Scheduling

Consider a FIFO queue that multiplexes many flows and offers
them a given guaranteed service curve β (t). Hence, applying
Eqs. (1) and (2), it is possible to compute the delay and
backlog bounds for the entire aggregate flow (the sum of all
flows) that enters the FIFO queue, provided that this aggregate
is bounded by an arrival curve. Note that while these delay and
backlog bounds are global for all flows, it is also possible to
compute the delay bounds for individual flows. We provide the
following corollary for aggregate scheduling in Network
Calculus, which will be used in our approach. This corollary is
a direct result from Proposition 6.2.1 in [10], and the proof can
be found in [19].

 Corollary 2. Aggregate Scheduling. Consider a FIFO
node that multiplexes two flows 1 and 2. Assume that flow 2 is
constrained by an arrival curve 2 2 2() t b r tα = + ⋅ and the
FIFO node provides a guaranteed service curve

() (),R T t R t Tβ += ⋅ − to the aggregate of flows. Then, for any
0θ ≥ , flow 1 is guaranteed the service curve:

() () ()
{ }

2 21
2

2
1 t

b r T
t R r t T

R rθ θ
θ

β
+

>

⎡ ⎤⎛ ⎞+ ⋅ −
= − ⋅ − +⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 (11)

4. System Model

In this section, we present the cluster-tree network model and
the corresponding traffic model that we consider in the rest of
this paper. We also discuss its validity for real-world WSNs.

4.1 The Cluster-Tree Network Model

Like in any tree network, the cluster-tree topology contains a
special node called root, which identifies the entire network. In
addition, in a tree network, some special devices may have the
ability to allow the association from other nodes. These nodes
are called routers. Other end devices with no ability to
associate other devices are called child nodes. Both child
nodes and routers are assumed to have sensing capabilities and
are referred to as sensor nodes.

Fig. 4 presents an example of the cluster-tree network with
the three types of nodes. A cluster-tree network is then a tree
network where each router forms it own logical cluster.

Fig. 4. The cluster-tree network model

Basically, we aim to specify the worst-case cluster-tree
topology, i.e. the network configuration that leads to the worst-
case delay bounds and resource requirements. This means that
a dynamically changing cluster-tree WSN can assume different
cluster-tree configurations, but, it can never exceed the worst-
case topology, in terms of maximum depth and number of
child routers/nodes.

For that purpose, we specify the worst-case cluster-tree
topology model by the following three parameters:

• maxDepth: represents the maximum depth of the
network, which specifies the maximum number of
logical hops for a message from a router to reach the
root (including the root as final hop). This means that
the network cannot expand more if the maximum
logical distance from a router to the root is equal to
maxDepth. The root is considered to be in a depth
equal to zero. Hence, the maximum depth of a child
node is then maxDepth+1 (see Fig. 4).

• Nchild: the maximum number of child nodes that can be
associated to a parent router and have been allocated
resource guarantees (e.g. time slots or bandwidth).

• Nrouter: the maximum number of child routers that can
be associated to a parent router and have been allocated
resource guarantees.

The example illustrated in Fig. 4 corresponds to a setting
where maxDepth = 3, Nrouter = 2 and Nchild = 3.

Note that a cluster-tree WSN may contain additional
routers/nodes per parent router than those defined by Nrouter and
Nchild. However, these additional devices are not granted
guaranteed resources. An illustrative example showing the

5

constraints on these parameters will be presented in the
application to IEEE 802.15.4/Zigbee protocols, in Section 6.

By convention, we say that a router at depth i is upstream to
a router at a depth j, if and only if i < j.

4.2 The Traffic Model

Data flows can be upstream (from a sensor node to the sink) or
downstream (from the sink to a given node). Typically, in
WSNs, critical messages are forwarded from individual sensor
nodes to the sink (e.g. control station), in the upstream
direction. The downstream direction is more dedicated to
queries sent by the control station. Without loss of generality,
we assume that the control station is attached to the root, and
thus we focus on critical flows in the upstream direction, from
sensor nodes to the root. In this paper, the case of downstream
flows is not considered due to space limitations.

In critical situations, every child node/router in a WSN can
be required to send a data flow to report its sensory data. In the
worst-case scenario, all child nodes/routers that have allocated
resources will have data to send to the sink. We assume that
the maximum individual data flow that can be sent by each
child node/router is bounded by the arrival curve

()data data datat b r tα = + ⋅ , where bdata is the maximum burst size
of the data flow, and rdata is its average rate. Observe in Fig. 4
that each child node and router has its sensory data input
bounded by αdata(t). This is an advantage of using Network
Calculus representation, since instead of considering the real
flow, which may be variable (e.g. periodic traffic, aperiodic
traffic, stochastic traffic), we merely consider an upper bound
of the cumulative arrivals of the flow, independently from its
nature. This traffic model also incorporates the classical
representation of the periodic arrival model with or without
jitter [20]. In case of heterogeneous traffic sources (different
types of sensors), ()data tα will represent the curve of the
highest cumulative arrival function. This may introduce more
pessimism to the analysis if the variance between different
node’s traffic is very significant. However, in most WSN
applications, the variance between different traffic flows is
likely to be small, since special events are commonly reported
by similar sensory data (e.g. temperature measurements,
electromagnetic signals).

As for the service model granted for each flow, recall that
we consider child nodes and routers that have been allocated
guaranteed resources. Thus, since the arrival curve in every
child node is constrained by αdata(t), it is assumed that each
child node has a service guarantee from its parent router
corresponding to the service curve () ()data data datat R t Tβ += ⋅ − ,
where data dataR r≥ is the guaranteed bandwidth and Tdata is the
maximum latency of the service, which refers to the deviation
of the service (e.g. blocking factor or non preemptive
transmissions). The latency depends on the resource allocation
mechanism. This service curve model fits any kind of
bandwidth guarantees, such as fair queuing, TDMA slot
allocation or IEEE 802.15.4 GTS mechanism [15].

On the other hand, child routers are also allocated
guaranteed resources by their parent routers. Contrarily to the
previous case, the amount of bandwidth required for each child
router depends on the amount of traffic at its input. For
instance, a router that is located at a higher depth in the tree
(closer to the root) must provide more bandwidth and buffering
resources than a router located at a lower depth (farther from

the root), due to the accumulation of upstream data flows in
the direction of the root. In addition, due to the symmetry of
our model, the bandwidth and buffering requirements only
depend on the depth of the router, i.e. all routers at the same
depth must provide the same resource guarantees. As a result,
we assume that any router j at a depth i provides a service
guarantee to each of its child routers corresponding to the
service curve () ()i i it R t Tβ += ⋅ − , where iR is the guaranteed
bandwidth, which must be higher than the overall rate of all
the input flows, and Ti is the maximum latency of the service.

Given such a cluster-tree topology model, we address the
worst-case dimensioning and performance analysis of the
WSN. In particular, we aim to characterize:

• The minimum resource requirements in each router,
in terms of (1) bandwidth requirement Ri and (2)
buffering requirement, i.e. the maximum buffer size
needed to store the bulk of data at the router’s input.

• The maximum delay bound of the WSN, which
represents the delay experienced by a data flow of a
node in the lowest depth (maxDepth+1) to reach the
root.

5. Cluster-Tree Network Analysis

In this section, we analyze the cluster-tree topology model for
WSN presented in Section 4. To address the worst-case
dimensioning problem, the first step is to derive recurrent
equations of the input and output flows inside the WSN. Then,
we characterize the resource requirements and the
corresponding service curves at each router. Finally, with the
knowledge of the input arrival curves and the service curves,
we derive the delay bounds for individual data flows.

To give a practical intuition on the general solution, let us
consider the example in Fig. 4 corresponding to a cluster-tree
WSN with maxDepth = 3, Nrouter = 2 and Nchild = 3. We propose
to evaluate the input/output arrival curves and service curves,
depth by depth, using the Sensor Network methodology
starting from the lowest leafs. Then, we deduce the general
recurrent expressions.

5.1 Computation of Input and Output Flows

Consider the following queuing system in Fig. 5, which is
equivalent to the one in Fig. 4.

Fig. 5. Queuing system model

Analysis of depth maxDepth+1 (depth = 4)
At depth maxDepth+1 (see Fig. 4), there is no router, and there
are nodes with input data flows, each flow constrained by the
arrival curve αdata(t). Since each node is granted a service
curve βdata(t), then using Eqs. (5) and (6), the output flow of
each child node can be expressed as follows:

() ()() ()*
data data data data data datat t t r Tα α β α= = + ⋅ (12)

6

Analysis of depth maxDepth (depth = 3)
At depth maxDepth (see Fig. 4 and Fig. 5), the total input of
each router, denoted by ()maxDepth tα , comprises its sensory
data flow constrained by αdata(t), and the sum of the output
flows of its child nodes.

() () ()*
maxDepth data Child datat t N tα α α= + ⋅

Thus, according to Eq. (12), we have:

() () ()1maxDepth Child data Child data datat N t N r Tα α= + ⋅ + ⋅ ⋅ (13)

Note that ()1maxDepth child datar N r= + ⋅ is the resulting rate
of the aggregate of ()1childN + input data flows, and

()1maxDepth child data Child data datab N b N r T= + ⋅ + ⋅ ⋅ is its resulting
burst.

The input flow ()maxDepth tα is forwarded by the router at
depth maxDepth to its parent router at depth maxDepth-1. This
child router is allocated a service curve

() ()1 1 1maxDepth maxDepth maxDeptht R t Tβ
+

− − −= ⋅ − by its parent.
Hence, according to Eq. (5), the output flow from a child
router at depth maxDepth is then expressed as:

() () ()()*
1maxDepthmaxDepth maxDeptht t tα α β −=

As a result, applying Eq. (6) we get:

() ()*
1maxDepthmaxDepth maxDeptht tα α σ −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

where 1 1maxDepthmaxDepth maxDepthr Tσ − −= ⋅
(14)

Analysis of depth maxDepth-1 (depth = 2)
At depth maxDepth-1, the total input of each router, denoted by

()1maxDepth tα − , comprises its sensory data flow constrained
by αdata(t), and the sum of the output flows of its child routers

()*
maxDepth tα and the output of its child nodes ()*

data tα . It
results that:

() () ()() ()()* *
1maxDepth data child data router maxDeptht t N t N tα α α α− = + ⋅ + ⋅

Thus, according to Eqs. (13) and (14) we have:

()

() ()

1

11

maxDepth

maxDepthrouter router maxDepth

t

N t N

α

α σ

−

−

=

⎛ ⎞+ ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (15)

The input flow ()1maxDepth tα − is forwarded by the router at
depth maxDepth-1 to its parent router at depth maxDepth-2.
This child router is allocated a service curve

() ()2 2 2maxDepth maxDepth maxDeptht R t Tβ
+

− − −= ⋅ − by its parent.
Hence, according to Eq. (5), the output flow from a child
router at depth maxDepth-1 is then expressed as:

() () ()*
11 2maxDepthmaxDepth maxDeptht t tα α β−− −=

As a result, applying Eqs. (6) and (15) we get:

() () ()*
1

1 2

1 maxDepthrouter
maxDepth

router maxDepth maxDepth

N t
t

N

α
α

σ σ
−

− −

+ ⋅ +
=

⋅ +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

where ()2 21 maxDepthmaxDepth router maxDepthN r Tσ − −= + ⋅ ⋅

(16)

Analysis of depth maxDepth-1 (depth = 1)
Similarly to the previous case, the input flow of each router

at depth maxDepth-2 is expressed as follows:

() () ()2

2
2

1 2

1 maxDepthrouter router
maxDepth

router maxDepth router maxDepth

N N t
t

N N

α
α

σ σ
−

− −

+ + ⋅
=

⋅ + ⋅

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (17)

and the output flow from a child router at depth maxDepth-2
for a service curve ()3maxDepth tβ − is then expressed as:

() ()*
22 3maxDepthmaxDepth maxDeptht tα α σ−− −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 where

()2
3 31 maxDepthmaxDepth router router maxDepthN N r Tσ − −= + + ⋅ ⋅

(18)

General expressions of input/output flows for depth
maxDepth-i

By recurrence, we can easily prove that the input flow of
each router at depth (maxDepth-i) is expressed as follows:

()

() ()()
1

1
0 0

maxDepth i

i i
j i j

maxDepthrouter router maxDepth j
j j

t

N t N

α

α σ

−

−
−

− +
= =

=

⎛ ⎞
⎜ ⎟ ⋅ + ⋅
⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑

where
1

0

n
k

maxDepthmaxDepth n router maxDepth n
k

 N r Tσ
−

− −
=

⎛ ⎞
⎜ ⎟= ⋅ ⋅
⎜ ⎟
⎝ ⎠
∑

(19)

and the output flow from a child router at depth (maxDepth-i)
for a service curve () ()1maxDepth i tβ − + is then expressed as:

() () ()

() ()()

*

0 0

1

1

maxDepth i

i i
i j

maxDepth router maxDepth-
j j

maxDepth i maxDepth- i

j
router j

t

N t N

tα

α σ

α σ−

−

= =

− +

+

=

⋅ + ⋅

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑

 (20)

5.2 Per-Router Resource Requirements

Bandwidth requirements
So far, we have computed the internal input and output flows
at each router as a function of its depth. Now, we propose to
compute the resource requirements at each router that must be
provided to its children to ensure bounded end-to-end delays
and to avoid buffering overflow.

First, in order to ensure bounded delays, it is mandatory that
the amount of bandwidth guaranteed to the input flow at each
router is greater than or equal to the input arrival rate.

Consider a parent router at depth maxDepth-(i+1) that
offers the service curve () ()1maxDepth i tβ − + to one of its child
routers with the input flow arrival curve ()maxDepth i tα − . It is
then necessary to have:

()1 maxDepth imaxDepth iR r −− + ≥ (21)

According to Eqs. (19) and (20), we obtain:

()

*

0

i
j

maxDepth i maxDepthmaxDepth i router
j

maxDepthmaxDepth i router

r r N r

 N rγ

− −
=

−

⎛ ⎞
⎜ ⎟= = ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

= ⋅

∑
 (22)

7

()maxDepth i routerNγ − is called the bandwidth increase
factor at a given depth (maxDepth-i). Note that

()maxDepth routerNγ refers to the total number of routers in the
network. The parameter ()maxDepth i routerNγ − increases with
the depth and Nrouter, and this factor represents the ratio of the
additional bandwidth that a router, at a depth (maxDepth-i),
must provide to each of its child routers as compared to the
bandwidth guaranteed at the lowest depth maxDepth.

a. Bandwidth increase factor as a
function of the depth and Nrouter

b. Feasible region for γi(Nrouter)=102

Fig. 6. Bandwidth increase factor (log-scale)

Fig. 6 presents the variation of the bandwidth increase
factor (logarithmic-scale) as a function of the depth of the
router and Nrouter.

It can be observed that if Nrouter is high (e.g. equal to 5) the
impact of the depth on the bandwidth requirement is very
significant. Note that the variation is very limited for the case
of Nrouter = 1, even for a depth equal to 10. Depending on the
maximum bandwidth increase factor allowed when
dimensioning the WSN, high values of the Nrouter parameter
can be tolerated if the maximum depth of the network is
limited. For instance, if the cluster-tree WSN cannot tolerate a
bandwidth increase factor more than 102 (see Fig. 6.b) all
points in the (X,Y,Z) axis located below the plan defined by

2Z=10 , X,Y∀ are potential solutions to determine the pair
(Nrouter, maxDepth). For example, with this bandwidth increase
constraint, the maxDepth parameter cannot exceed 2 if Nrouter =
5, while it can be set to 5 if Nrouter = 2.

Buffering requirements
The buffering requirement of a given router at a depth
(maxDepth-i) stands for the minimum buffer size required to
store the incoming bulk of data to avoid buffer overflow. Since

()maxDepth i tα − is the input of a router at a depth (maxDepth-
i), the minimum buffer size must be greater than the burst size

maxDepth ib − of the input arrival curve ()maxDepth i tα − . If we
denote by QmaxDepth-i the minimum buffering requirement of a
router at a depth (maxDepth-i), then according to Eq. (21), we
obtain:

()()
1

1
0 0

latencyburst
maxDepth i maxDepth i maxDepth i

i i
j i j

maxDepthrouter router maxDepth- j
j j

Q Q Q

N b N σ

− − −

−
−

+
= =

= + =

⎛ ⎞
⎜ ⎟ ⋅ + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∑ ∑

 (23)

Observe that the buffering requirement is the sum of two
terms. The first term is related to the input burst and is a
function of the ()maxDepth i routerNγ − factor, thus the same
behavior as with the bandwidth requirement applies for this
term. The second term represents the cumulative effect of the
service latency at each depth. This term closely depends on the
service curve guaranteed to the child routers.

5.3 Delay Bound Analysis

We propose to compute the maximum delay bound of the
cluster-tree WSN, which is the delay bound of a data flow sent
by a node in the lowest depth (maxDepth+1) to reach the root.
There are two approaches to compute this delay bound.

The First Approach (per-hop delay bounds for aggregates)
The first approach consists in computing the per-hop delay
bounds of the aggregate input flows, and then deducing the
end-to-end delay bound as the sum of per-hop delays. This
approach was used in [11, 12].

The maximum per-hop delay bound in a router at a depth
()maxDepth i− can be obtained using Eq. (3) applied to the
input arrival curve ()maxDepth i tα − and to the service curve

() ()1maxDepth i tβ − + . Assuming inequality (21) is satisfied, the
delay bound is expressed as:

()
()1

1

maxDepth i
maxDepth i maxDepth- i

maxDepth i

b
D T

R
−

− +
− +

= + (24)

where maxDepth ib − is the burst size of ()maxDepth i tα − defined
in Eq. (19).

Hence, using this approach, the maximum end-to-end delay
bound in the cluster-tree topology is the sum of all maximum
per-hop delay bounds and is equal to:

2
max

0

maxDepth
e e

data maxDepth i
i

D D D −
=

= + ∑ where

data
data data

data

bD T
R

= +
(25)

Note that Ddata is the delay bound guaranteed to a child node
associated to a router at depth maxDepth.

This approach is a bit pessimistic, since the delay bound at
each hop concerns the aggregate input flow at each router. A
tighter delay bound is derived next.

The Second Approach (tighter delay bounds)
The idea of the second approach is to use the aggregate
scheduling corollary based on Eq. (11) and the service curve
concatenation theorem based on Eq. (8). First, we aim to
derive the service curve offered to a particular individual flow
F among the aggregate by a router at a given depth, using Eq.
(11). Then, we deduce the equivalent service curve for this
particular flow along the path, using Eq. (8). The delay bound
will be computed based on the equivalent service curve. This
technique has been used in [14].

We consider the tandem of service curve elements as
presented in Fig. 5. The approach is based on the following
algorithm:

• Step 1. βlast is equal to the last service curve element
(i.e. router) in the tandem.

• Step 2. Compute the βeq equivalent service curve to an
output flow of the previous service curve element βlast-1
using Eq. (11).

• Step 3.Replace βlast = βlast-1⊗βeq since the concatenation
is also a service curve to the input of βlast-1. The length
of the tandem is then reduced by one.

• Step 4. if the tandem length is greater than one, then
Go to Step 1; else, βlast is the equivalent end-to-end
service curve.

• Step 5. Compute the delay bound using the equivalent
service curve applied to the input arrival curve.

8

It is easy to derive recurrent expressions for the delay bound
using the above algorithm, as it is shown in [18]. In Section 6,
we show that this approach provides tighter delay bounds than
the first one.

6. Application to IEEE 802.15.4/Zigbee

The aforementioned analysis is independent from any specific
protocol. In addition, the proposed model is quite interesting
for existing cluster-tree WSN protocols that provide
guaranteed services, such as LEACH [2] or IEEE
802.15.4/Zigbee [6, 7], and it can be easily used for their
worst-case dimensioning. In this section, we show the practical
applicability of our approach by instantiating the general
model proposed in Section 5 for IEEE 802.15.4/Zigbee cluster-
tree WSNs, and provide a methodology for its worst-case
dimensioning. The computations are made using MATLAB.

6.1 The IEEE 802.15.4/Zigbee Protocol Features

In IEEE 802.15.4 beacon-enabled mode, beacon frames are
periodically sent by a central device, called PAN Coordinator,
to identify its WPAN and synchronize nodes that are
associated with it. Doing so, a superframe structure is defined
by (see Fig. 7) (1) the Beacon Interval (BI), which defines the
time between two consecutive beacon frames, (2) the
Superframe Duration (SD), which defines the active portion in
BI, and is divided into 16 equally-sized time slots, during
which frame transmissions are allowed. Optionally, an inactive
period is defined if BI > SD. During the inactive period (if it
exists), all nodes may enter in a sleep mode to save energy.

Fig. 7. Beacon Interval and Superframe concepts

BI and SD are determined by two parameters, the Beacon
Order (BO) and the Superframe Order (SO), respectively, as
follows:

 0 14
2

2

BO

SO
for SO BO

BI aBaseSuperframeDuration

SD aBaseSuperframeDuration
≤ ≤ ≤

⎫= ⋅ ⎪
⎬

= ⋅ ⎪⎭
(26)

aBaseSuperframeDuration = 15.36 ms (assuming 250 kbps
in the 2.4 GHz frequency band) denotes the minimum duration
of the superframe, corresponding to 0SO = .

During the SD, nodes compete for medium access using
slotted CSMA/CA in the Contention Access Period (CAP). For
time-sensitive applications, IEEE 802.15.4 enables the
definition of a Contention-Free Period (CFP) within the SD,
by the allocation of Guaranteed Time Slots (GTS). It has been
shown in [15] that the GTS mechanism provides a rate-latency
service curve to nodes that allocate time-slots, where the rate
and the latency depend on BI, SD and the number of allocated
time slots in the GTS.

While IEEE 802.15.4 only supports the beacon-enabled
mode only for star-based topologies, Zigbee has proposed its

extension to cluster-tree topologies, where the PAN
Coordinator (or Zigbee Coordinator) is identified as the root of
the network, and the other coordinators as intermediate routers
that also generate beacon frames to their child nodes (nodes
that are associated to the network through the router). In order
to avoid beacon collisions between multiple routers, the
Zigbee standard has proposed a beacon scheduling approach
such that the superframe durations are non-overlapping during
a beacon interval. Fig. 8 illustrates a simple example of this
approach for four nodes with the same SD and BI. This
approach is suitable for WSNs operating in low duty cycles.

Fig. 8. The beacon scheduling approach in Zigbee

6.2 Dimensioning of an IEEE 802.15.4/Zigbee
Cluster-Tree WSN

Let us consider a WSN organized in a cluster-tree topology,
with the same parameters as for the example in Fig. 4
(maxDepth = 3, Nrouter = 2, Nchild = 3). Nrouter and Nchild are the
number of routers and nodes that allocate GTSs from their
parents. Since the standard does not allow more than seven
GTS allocations, Nrouter and Nchild are constrained as follows:

7router childN N+ ≤ (27)
In our application scenario, we assume that all routers have

the same SD and BI, and the superframe durations are not
overlapping with each other, as presented in Fig. 8. According
to our traffic model, we assume that each sensor node (router,
or child node) generates a data flow constrained by the arrival
curve ()data data datat b r tα = + ⋅ .

BO and SO settings
It has been shown in [15] that the service curve provided by

a GTS allocation intrinsically depends on the setting of BI and
SD. Hence, the first problem that we address is to determine
the BO and SO parameters. First, let us assume that SO = 0,
which corresponds to SD = 15.36 ms for all routers. On the
other hand, the number of routers in cluster-tree topology is
equal to ()3 2 15γ = , according to Eq. (22).

The first constraint is that BO must be set such that at least
15 superframe durations with SO = 0 fit inside the beacon
interval to have non-overlapping active periods (as in Fig. 8).
It results that:

() () 0
3 32 2 2 2BOBI SDγ γ≥ ⋅ ⇔ ≥ ⋅ (28)

As a result, the minimum BO is defined as:

()()min 2 3log 2 4BO γ⎡ ⎤= =⎢ ⎥ (29)

It is then possible to have 24 = 16 SDs inside one BI. The
resulting duty cycle for each router is equal to (1/16) = 6.25%.

Bandwidth per time slot
Each allocated time slot of a GTS has a portion used for
effective data transmission and a portion used by overheads
(inter-frame spacing, acknowledgement frames if required).
According to [15], the maximum bandwidth guaranteed by a
time slot for SO = 0 is equal to 9.38 kbps with 100% duty
cycle. Hence, with the above network setting, the bandwidth
guaranteed by one allocated time slot in a given superframe is
equal to 9.38 kpbs 0.625TSR = ⋅ , which gives 0.586 kbpsTSR = .

9

Sensing input rate limits
Each SD is divided into 16 equal time slots. The standard
suggests to have a minimum CAP length of 7.04 ms, which
corresponds to approximately 8 time slots with SO = 0. Hence,
the maximum CFP length in this case is restricted to 8 time
slots. Just for illustration purposes, we assume that the
maximum CFP length is equal to LCFP = 14 (only two time
slots are left for the CAP).

With this constraint, a router cannot reserve more than LCFP
time slots for its child nodes and routers. Assuming that each
child node allocates at most one time slot (arrival rate of
sensory data is smaller than RTS), thus the remaining time slots
for the Nrouter child routers is equal to (LCFP – Nchild). Since the
bandwidth requirement mainly depends on the arrival rate of
the sensory data flow (see Eq. (22)), this parameter must be
limited in order to not exceed the maximum bandwidth that a
router can provide.

Obviously, due to the cumulative upstream flow effect, the
maximum bandwidth requirement will be claimed by the child
routers of the root. Hence, at the root level, the maximum
number of time slots that can be allocated to each child router
is equal to () - CFP child routerL N N⎢ ⎥⎣ ⎦ . The corresponding
guaranteed bandwidth is equal to:

0
 - CFP child

TS
router

L NR R
N

⎢ ⎥
= ⋅⎢ ⎥

⎣ ⎦
.

According to Eq. (21), the maximum input rate from a child
router at a depth equal to 1, i.e. 1r , satisfies:

()1 1
-CFP child maxDepthTS router

router

L Nr R N r
N

γ
⎢ ⎥

= ⋅ = ⋅⎢ ⎥
⎣ ⎦

since ()1maxDepth child datar N r= + ⋅ , we deduce that:

() ()
max

1

-
1

CFP child TS
data

router router child

L N Rr
N N Nγ

⎢ ⎥
= ⋅⎢ ⎥ ⋅ +⎣ ⎦

 (30)

As a result for LCFP = 14, we get max 0.104 kbpsdatar = . In what
follows, we assume that 200 bitsdatab = and 0.1 kbpsdatar = .

Bandwidth requirement and time slot number per router
Depending on its bandwidth requirement, each child
router/node must allocate a given number of time slots such
that the resulting bandwidth is greater than the input rate, as
mentioned in Eq. (21). Hence, we propose to compute the
minimum number of time slots required for each child router
in each depth, which will enable us to determine the rate-
latency service curve in each router. In fact, according to [15],
a GTS with n allocated time slots provides a service curve

(),Rn Tn tβ , where the bandwidth n TSR n R= ⋅ and the latency
 nT BI n TS= − ⋅ . TS=SD/16 is the duration of the time slot.

The bandwidth requirement maxDepth ir − corresponding to
each depth is computed using Eq. (22). Thus, based on Eq.
(21), the corresponding number of time slots is expressed as:

()1
maxDepth iTS

maxDepth i
TS

rN
R

−
− +

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎢ ⎥

Fig. 9 presents the results for the bandwidth requirement
versus the reserved bandwidth per router, for each depth.

 Observe that the maximum number of time slots is
allocated by a router at depth 1, and is equal to 5. Since there
are two child routers and three child nodes, the total number of
allocated time slots is 13, which is smaller than LCFP = 14.

Fig. 9. Bandwidth requirements versus reserved bandwidth

per router as a function of the depth

Buffering requirement per router
To estimate the buffering requirement at each router, we apply
Eq. (23). The results are presented in Fig. 10, which shows the
impact of depth on the buffering requirement.

Fig. 10. Buffering requirements per router as a function of the depth

Observe that the cumulative effect of the input burst is more
important than the cumulative effect of the service latency on
the buffering requirement. This is mainly due to the fact that
the input arrival rate is relatively low. The effect of the service
latency may be more important for other settings of bdata, and
rdata. Due to space limitations, we do not address the effect of
different settings of the arrival curve on the buffering
requirement. It can be observed that Q1 is roughly seven times
greater than Q3, which is basically due to the impact of the

()maxDepth i routerNγ − parameter.

Delay bound evaluation
Fig. 11 presents the per-hop delay bounds in each router
computed using Eq. (24), and the end-to-end delay bounds
obtained by the first approach (using Eq. (25)), and by the
second approach (using the recursive algorithm).

Fig. 11. Per-hop delay bounds and end-to-end delay bounds as a

function of the depth

10

A first observation confirms that the first approach using
the sum of per-hop delays is more pessimistic than the second
one based on the computation of the end-to-end service curve.
The end-to-end delay bounds are quite high, even though the
bdata and rdata are low. This is typically due to the low duty
cycle (6.25%). It is possible to reduce the delay bounds by
allocating more time slots in a superframe (if possible), and
also by finding another beacon scheduling approach such that
the beacon interval would be smaller, leading to smaller
service latencies and higher bandwidth guarantees, since the
duty cycle will increase. Observe also that the per-hop delay
bounds are relatively steady, since the buffering and bandwidth
requirements are both proportional to the ()maxDepth i routerNγ − .

7. Concluding Remarks

This paper improves on the state-of-the-art with the proposal
of a general model for wireless sensor networks (WSNs)
organized in a cluster-tree topology, and a methodology for
dimensioning the required network resources and analyzing its
timing performance. We assumed a worst-case topology
defined by a maximum depth, the maximum number of child
routers and child nodes per parent router. We have provided
“plug-and-play” recurrent expressions to compute the resource
requirements (bandwidth and buffering) and message delay
bounds for our WSN model. In addition to this theoretical
contribution that can be applied to any cluster-tree network
with resource guarantees, we have demonstrated how to apply
the general results to the case of cluster-tree IEEE
802.15.4/Zigbee WSNs.

Our methodology provides a practical means to choose the
adequate settings of cluster-tree WSNs, for applications with
real-time requirements, depending on the available resources,
and the delay bound requirement. In fact, one of the important
general results is the relation between the resource increase
ratio as a function of the depth and the number of routers. For
low arrival rates, the bandwidth and buffering requirement
increase ratios are both proportional to the factor

()maxDepth i routerNγ − . In this case, the per-hop delay bounds
are roughly steady, as it has been shown in Fig. 11. For higher
arrival rates, the impact of the service latency on the buffering
requirements would be more important, and consequently,
leading to an increased variance on the per-hop delays.

The work carried out in this paper can be extended to
evaluate the cluster-tree topology in the downstream direction,
and also to study the impact of data aggregation on reducing
the resource requirements and the delay bounds.

On the other hand, the model and the methodology that we
have proposed trigger new research lines. For instance, they
can be used to optimize the dimensioning of IEEE
802.15.4/Zigbee networks. The basic beacon scheduling
approach proposed by Zigbee is not adequate for an optimized
behavior of cluster-tree WSNs. Thus, one open issue is to
optimize the beacon scheduling mechanism in a way that
routers at higher depths (closer to the root) will be operating at
higher duty cycle than routers at lower depths. The problem is
how to choose different SO and BO for each router depending
on its depth (i.e. bandwidth requirement). Another research
line concerns a more efficient use of the GTSs by allowing the
allocation of the same GTS by more than one node at the same
time, as proposed in [16] for the single cluster case.

References

[1] J. A. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and J. Hou, "Real-
Time Communication and Coordination in Embedded Sensor
Networks," Proceedings of the IEEE, vol. 91, pp. 1002-1022, 2003.

[2] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-
efficient communication protocols for wireless microsensor
networks," in Proceedings of the Hawaii International Conference on
Systems Sciences, Hawai, 2000.

[3] G. Pei and C. Chien, "Low power TDMA in Large Wireless Sensor
Networks," in Proceedings of the Military Communications
Conference (MILCOM'01). Communications for Network-Centric
Operations: Creating the Information Force, 2001.

[4] V. A. Kottapalli, A. S. Kiremidjiana, J. P. Lyncha, E. Carryerb, T. W.
Kennyb, K. H. Law, and Y. Lei, "Two-Tiered Wireless Sensor
Network Architecture for Structural Monitoring," in Proceedings of
the 10th Annual International Symposium on Smart Structures and
Materials, San Diego (USA), 2003.

[5] G. Gupta and M. Younis, "Fault-Tolerant Clustering of Wireless
Sensor Networks," in Proceedings of the IEEE Wireless
Communication and Networks Conference (WCNC 2003), New
Orleans (Louisiana), 2003.

[6] IEEE-TG15.4, "Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs)," IEEE standard for
Information Technology, 2003.

[7] Zigbee-Alliance, "ZigBee specification," http://www.zigbee.org/,
2005.

[8] A. Koubâa, M. Alves, and E. Tovar, "IEEE 802.15.4: a Federating
Communication Protocol for Time-Sensitive Wireless Sensor
Networks," in Technical Report TR-060201, to appear in Sensor
Networks and Configurations: Fundamentals, Techniques, Platforms,
and Experiments, N. P. Mahalik, Ed. Germany: Springer-Verlag,
2006.

[9] T. F. Abdelzaher, S. Prabh, and R. Kiran, "On Real-Time Capacity
Limits of Multihop Wireless Sensor Networks," in Proceedings of the
IEEE International Real-Time Systems Symposium, Lisbon,
Portugal, 2004.

[10] J.-Y. Leboudec and P. Thiran, A Theory of Deterministic Queuing
Systems for the Internet: Lecture Notes in Computer Science
(LNCS), Vol. 2050, 2001.

[11] J. Schmitt and U. Roedig, "Sensor Network Calculus - A Framework
for Worst Case Analysis," in Proceedings of the IEEE/ACM
International Conference on Distributed Computing in Sensor
Systems (DCOSS'05), LNCS 3560, Marina del Rey, USA, 2005.

[12] J. Schmitt and U. Roedig, "Worst Case Dimensioning of Wireless
Sensor Networks under Uncertain Topologies," in Proceedings of the
3rd IEEE International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks, (WiOpt'05) Workshop on
Resource Allocation in Wireless Networks, Riva del Garda, (Italy),
2005.

[13] J. Schmitt, F. Zdarsky, and U. Roedig, "Sensor Network Calculus
with Multiple Sinks," in Proceedings of the IFIP Networking 2006,
Workshop on Performance Control in Wireless Sensor Networks,
Coimbra, (Portugal), 2006.

[14] L. Lenzini, L. Martorini, E. Mingozzi, and G. Stea, "Tight end-to-end
per-flow delay bounds in FIFO multiplexing sink-tree networks,"
Performance Evaluation Journal (Elsevier), vol. In Press, Corrected
Proof, Available online 20 December 2005, 2006.

[15] A. Koubâa, M. Alves, and E. Tovar, "GTS Allocation Analysis in
IEEE 802.15.4 for Real-Time Wireless Sensor Networks," in 14th
International Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS 2006). Rhodes Island (Greece): IEEE, 2006.

[16] A. Koubâa, M. Alves, and E. Tovar, "i-GAME: An Implicit GTS
Allocation Mechanism in IEEE 802.15.4," in Proceedings of the
Euromicro Conference on Real-Time Systems (ECRTS 2006), 2006.

[17] S.-e. Yoo, D. Kim, M.-L. Pham, Y. Doh, E. Choi, and J.-d. Huh,
"Scheduling Support for Guaranteed Time Services in IEEE 802.15.4
Low Rate WPAN," in Proceedings of the 11th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA'05), Hong Kong (CHINA), 2005.

[18] A. Koubâa, M. Alves, and E. Tovar, "Modeling and Worst-Case
Dimensioning of Cluster-Tree Wireless Sensor Networks: proofs and
computation details," Technical Report IPP-HURRAY!, TR-060601,
available online http://www.dei.isep.ipp.pt/~akoubaa/submissions.htm,
2006.

[19] L. Lenzini, E. Mingozzi, and G. Stea, "Delay Bounds for FIFO
Aggregates: A Case Study," Computer Communications Journal,Vol.
28, No. 3, pp. 287-299, 2005.

[20] A. Koubaa and Y. Q. Song, "Evaluation and improvement of
response time bounds for real-time applications under non-pre-
emptive fixed priority scheduling," International Journal of
Production Research, vol. 42, pp. 2899-2913, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

